
An Artificial Intelligence Approach to

Redistricting

Rohan Ramchand

October 2017



Abstract

Gerrymandering, or the use of the redistricting pen to effect a partisan advan-

tage, has long hampered the ability of the American people to freely choose

their Congressional representation. Instead, gerrymandering has created a

system where, rather than voters choosing their representatives, represen-

tatives can choose their voters. In this paper, we discuss the history and

practice of gerrymandering in the United States and propose a novel method

of drawing nonpartisan legislative district lines. Our method allows for the

creation of districts optimized along several axes, vastly improving on previ-

ous single-objective optimizers. Along the way, we give a novel proof that the

balanced connected problem, a well-known NP -complete problem, remains

NP -complete for planar input graphs.
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Introduction

In 2003, the state of Texas sent 17 Democrats and 15 Republicans to the

United States Congress. That year, for the first time in modern history, the

Republican Party gained a majority of seats in the Texas Senate, completing

their takeover of the state government. Conveniently, this was around the

same time the state’s Congressional district lines needed to be redrawn. The

Republican Party created, proposed, and passed their plan with little oppo-

sition. And so, in 2004, after the new plan was put into effect, Texas sent 11

Democrats and 21 Republicans to Congress.

There are lot of reasons why this might happen; indeed, the Republicans

won four percentage points more of the vote share between 2002 and 2004.

But that shift in vote share doesn’t correlate with a six-seat shift, and the

2003 redistricting was widely criticized for granting the Republicans an un-

fair advantage. The redistricting was challenged in the Supreme Court, but

while the Court did reject the 23rd District as being unconstitutionally unfair

to minority voters, they ruled that the plaintiffs didn’t present satisfactory

evidence of partisan bias. (As a side note, the rejection of the TX-23 did

nothing to harm the overwhelming Republican majority, which continues to

this day.)

The practice of drawing legislative district lines to artificially magnify

minorities or eliminate majorities is called gerrymandering. Gerrymandering

has been used by partisan lawmakers interested in securing electoral victories

throughout the history of the United States. With the advent of modern
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technology, politicians have found it easier to create potent gerrymanders

that, on the surface, appear fair, but profoundly limit the ability for voters

to have their interests represented well.

But, if technology can be used to draw better gerrymanders, it can also

be used to draw fairer, less partisan district maps. Some work has already

been done in this field. This paper proposes a general framework for building

districts optimized to maximize fairness. In order to do that, though, we first

need a solid understanding of how redistricting works, what good (and bad)

district maps look like, and what laws exist governing redistricting.

This paper is divided into four sections. The first section discusses gerry-

mandering in detail, covering the rules that govern the process and the ideals

to which the process is held. The second section lays the foundation for the

mathematical models used in this paper. The third section introduces a new

evolutionary framework for redistricting algorithms. The fourth section dis-

cusses implementation challenges and results, as well as future directions for

this work.
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Chapter 1

Gerrymandering in the United

States

The lower house of the United States Congress, the House of Representatives,

is composed of 435 representatives, elected by the population of political re-

gions called districts. Each state has a different number of representatives,

depending on the population of the state; Wyoming, the least populous state,

has one delegate, while California, the most populous, has 53. Every ten

years, following the decennial Census, each state is assigned a number of

seats in the House in a process called reapportionment. Generally speaking,

sometime between one to three years after the reapportionment, the states

redraw their district lines in a process called redistricting. This section dis-

cusses how redistricting is supposed to work and where it can go wrong.

1.1 Redistricting

Redistricting, broadly speaking, is the process by which states divide them-

selves into distinct political regions called districts.1 Each district functions

1Districts are also used at the state level for elections to state legislatures. While this
work focuses exclusively on Congressional elections, it is not difficult to conceive of an
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in Congressional elections as independent political units, and the represen-

tatives they select are given the mandate of solving the problems of their

district. The way in which the districts are laid out is therefore of tremen-

dous importance, since at the federal level each district is treated as a bloc.

The losing side in district elections—the side with less support, even if by

a slim margin—might find itself completely ignored by their representatives,

whose mandate is granted by the winning side.

Article I, Section 4 of the United States Constitution states that “The

Times, Places and Manner of holding Elections for Senators and Representa-

tives, shall be prescribed in each State by the Legislature thereof.” Because

state legislatures are granted all but total control over the redistricting pro-

cess, each state has a different set of policies and practices that govern its re-

districting. Seven states—Wyoming, Montana, North Dakota, South Dakota,

Alaska, Delaware, and Vermont—don’t have a population large enough to

qualify for more than one district. The other 43, while occasionally differ-

ing from one another in particular areas, generally hew to a set of standard

practices. There are two federal requirements, however, that bind every

state—equal population and preservation of communities of interest—which

are discussed in more detail in Sections 1.4 and 1.5.

Who draws the lines?

In 37 states, control of the redistricting process is left entirely up to the state

legislature. Generally speaking, both chambers must agree to a redistricting

plan, and in every state but one (North Carolina), the governor is empow-

ered to veto plans proposed by the legislature. The remaining six states rely

on commissions, generally either chosen by the leaders of the legislature or

appointed by the governor. In two states, New Jersey and Hawaii, these com-

missions consist of elected officials; in the other four—Arizona, California,

Washington, and Idaho—the committees consist of unelected citizens, gener-

application to state-level redistricting as well.
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ally redistricting experts. Several of the other 37 states also rely on advisory

commissions, although these bodies only draw district plans themselves when

their state legislatures cannot agree to a plan. In almost every state, where a

decision cannot be made, the state’s Supreme Court is empowered to unilat-

erally draw new district lines. (For a more detailed state-by-state breakdown,

see [36] or [39].)

What should districts look like?

Aside from the two federal requirements mentioned above, states generally

follow a consistent set of requirements for district plans:

1. Contiguity requires that all districts be geographically contiguous;

that is, except in the case of islands, any two points within a district

should be reachable by a path entirely within the district.

2. Compactness requires that “constituents within a district should live

as near to one another as practicable” [39]. Compactness can be diffi-

cult to enforce, as there are several standards of geographic compact-

ness (discussed below in Section 1.6).

3. Communities of interest are defined as a “group of people in a

geographical area, such as a specific region or neighborhood, who have

common political, social or economic interests” (see [39]). It’s generally

accepted that such communities should be represented as a bloc, and

several states require that those communities be contained in a single

district where possible. (As with compactness, since defining what

exactly a community of interest is is tricky, this is a hard standard to

hold to.)

4. Political boundaries like city or county boundaries are generally re-

quired to be preserved by districts. The idea behind this requirement is
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that cities, like communities of interest, share political goals and should

be represented as a bloc.

5. Population equality requires all districts to be as equal in population

as is possible. Unlike the previous requirements, this is a hard require-

ment imposed at the federal level. It’s generally accepted [39] that

district maps whose least and most populous districts differ in popu-

lation by more than one percent are presumptively (that is, without

further consideration) unconstitutional.

6. Minority representation refers to the idea that minorities, who his-

torically were targeted by gerrymanders, should have the same voice in

Congress as the majority. Formally encoded in Section 2 of the Voting

Rights Act of 1965, a federal law, the requirement is strict, and can be

violated both intentionally and otherwise.

A district map that has those six qualities is difficult to come by. It’s also

not clear that such districts are representative of their population. What

it means for a population to be well-represented is a complex question, but

while those requirements aren’t guaranteed to encapsulate a good district

map by themselves—not in the least because they are largely qualitative, not

quantitative—they do provide a good framework for thinking about district

design.

How are districts drawn?

As mentioned above, districts generally hew to political boundaries. His-

torically, districts were drawn by combining counties or cities, since more

granular construction was intractable until the advent of computer-aided

redistricting. (Tracking down the first computer-aided gerrymander is chal-

lenging, since states didn’t generally discuss the methods they used, but

William Vickrey’s proposal in 1961 [1] seems to be regarded as the earliest
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mention of computer-aided redistricting [18].) Since then, however, comput-

ers have introduced a level of sophistication into district-drawing that makes

gerrymandering easier than ever.

When the Census is taken, the country is divided into tiny regions called

Census blocks. The United States contains 11,078,297 Census blocks, each

of which typically has a population of less than 1,000 people. These blocks

are grouped into 217,740 block groups, which are grouped into 73,057 tracts,

which make up the country’s 3,143 counties. Blocks are the most granular

level at which Census data are available, although demographic data collected

in the American Community Survey (which taken more frequently than the

Census) is only published at the block group level. Every geographic unit

partitions the country—that is, no two units overlap, and the units as a

whole cover the entirety of the landmass in the United States.

Even with modern technology, redistricting at the block level can be com-

putationally intractable. On average, there are more than 217,000 blocks per

state, which can be partitioned into more combinations than there are atoms

in the Universe.2 Software like Maptitude3, which overlays Census and polit-

ical data over a block-level map of the United States, rather than calculating

over this enormous space, allow district planners to modify existing district

maps by moving blocks from one district to another and seeing the effect on

potential elections.

1.2 Gerrymandering

Partisans have long recognized the power of redistricting to create partisan

advantages where none exist. Given sufficient latitude over the redistricting

process, it’s possible to fracture large blocs of opposition voters into multiple

districts, making them the minority in each, or pack them into one district,

2In particular, the number of partitions of an n-element set into k sets is given by
S(n, k), the Stirling numbers of the second kind. For context, S(1000, 20) = 4.4× 101282.

3See www.caliper.com/maptovu.htm.
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isolating their influence to one seat in Congress. The term gerrymandering

originated in 1812, when the Federalist governor of Massachusetts, Elbridge

Gerry, created a district in northeastern Massachusetts so convoluted that it

resembled the mythical4 salamander.5

Broadly speaking, gerrymandering describes any use of redistricting to

achieve a particular goal. Its history in the United States broadly falls into

two categories: gerrymandering to silence a minority demographic, or racial

gerrymandering, and gerrymandering to silence a political group, or partisan

gerrymandering. Racial gerrymandering, infamously used to silence newly

enfranchised black voters during the Jim Crow era, was outlawed by the

Voting Rights Act of 1965. Partisan gerrymandering—the subject of this

paper—has, despite having a longer and broader history, remained legal.

The Supreme Court, as described below, has had several opportunities to

outlaw the practice, but has yet to do so.

Gerrymandering can be achieved in several ways:

1. Packing places a voter bloc into a single district, thus guaranteeing

them a victory but isolating their voice to that district.

2. Cracking divides a voter bloc into several districts, thus guaranteeing

them a voice in multiple elections, but with no chance of victory in any.

3. Hijacking places two elected officials from the same party into the

same district, thus creating a more competitive primary, possibly end-

4Some readers may be confused by the adjective “mythical” to describe salamanders.
It should be noted that salamanders are, in fact, a real creature, and that the mythical
salamander is distinguished from the biological salamander by a number of properties, for
example affinity to fire and, apparently, odd geography.

5Many believe that the first gerrymander came not from Elbridge Gerry, but from
the Antifederalist Patrick Henry, who in 1788 used his influence over the Virginia House
of Delegates to draw a district map placing James Madison, a prominent Federalist, in
a district that would have made it difficult to achieve victory. However, some recent
scholarship (see [20]) suggests that this might not actually be the case, illustrating the
difficulty of identifying partisan gerrymanders.
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ing the tenure of a powerful incumbent, and potentially creating a

winnable district for the other party from the other original district.

4. Kidnapping places popular candidates in competitive districts, thus

making it harder to win elections.

The aim of gerrymandering differs from state to state (and from district

to district), but generally speaking, gerrymanders fall into a handful of cat-

egories:

1. Packing and cracking. Packed and cracked district maps combine

the first two methods above to dilute a vote.

2. Bipartisan gerrymandering. Bipartisan, sweetheart, or status quo

ante gerrymandering seeks to preserve electoral results across redis-

trictings.

3. Natural gerrymandering. Some authors [24, 15] point out that

gerrymandering can happen unintentionally, as young liberals tend to

cluster in urban areas while older conservatives tend to live in rural

areas, making it difficult not to gerrymander the population.

A common misconception is that gerrymandering is done with the aim of

maximizing the number of districts won by one party, but this is only one

potential goal. Gerrymandering might be done with the goal of winning only

as many seats as is necessary to achieve a majority in the House of Rep-

resentatives (making, for example, the requirements on a liberal state like

Massachusetts for number of seats won by the Republican Party less impor-

tant than those for a more conservative state like Texas). It also might be

done to preserve a particular incumbent, even at the cost of other seats. In

Wisconsin, for example, the Republican legislature would likely value ensur-

ing a victory in the First District, home of Speaker of the House Paul Ryan,

more than winning additional seats in Congress.
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Arguably the most common strategy centers not around winning seats but

around ensuring the other party wastes as many votes as possible. A wasted

vote is one that doesn’t impact the results of an election. Any vote for the

losing party6, or any vote for the winning party above the bare minimum

needed to achieve victory, is considered wasted. Packing and cracking, as

demonstrated in the example below, is particularly effective in wasting votes.

The votes diluted in both packed districts (where the bloc generally wins by a

larger-than-necessary margin) and cracked districts (where the bloc is forced

to lose) are almost all wasted.

Packing and cracking in practice

A natural question to ask is how bad gerrymandering can get. Consider an

election in a state S with 11 districts, each of which has 11 voters. Every

voter votes for either party A or party B. Suppose that party A is in control

of the redistricting process, and their goal is to hold the majority of seats

in the state’s delegation. The minimum number of seats they’d need is six,

and in each of those six elections party A would only need six votes—a total

of 36 votes. Meanwhile, the other five votes in each of the six districts—a

total of 30 votes—could go to party B with no impact on the outcome. The

other five districts could also go to party B in their entirety—a total of 55

votes—thus making the statewide vote count 36–85 against party A. But the

delegation would still go 6–5 for party A. (See Table 1.1 below.)

In this example, party B’s vote in districts 1 through 6 are cracked—in

none of those districts do they have enough of a vote share to win the seat.

All 5 votes for B cast in those elections are wasted, since B loses. In districts

7 through 11, party B’s vote is packed—in each district, they’re guaranteed

a win, even though their votes would be far more effective elsewhere. Since

6In theory, there could be more than one loser, for example in multiparty systems.
In the American context, where two parties are the norm, this is less relevant, and isn’t
considered in this paper.
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District Votes for A Votes for B Outcome Wasted Votes
1 6 5 A 5 (B)
2 6 5 A 5 (B)
3 6 5 A 5 (B)
4 6 5 A 5 (B)
5 6 5 A 5 (B)
6 6 5 A 5 (B)
7 0 11 B 5 (B)
8 0 11 B 5 (B)
9 0 11 B 5 (B)
10 0 11 B 5 (B)
11 0 11 B 5 (B)

Total 36 85 A (6–5) 55–0 (B)

Table 1.1: Outcomes in S. Here, even though votes for Party B outnumber
votes for Party A by a more than 2-to-1 ratio, Party A still controls the
majority of S’s delegation.

B only needs 6 votes to win, the additional 5 votes cast for B are also wasted.

In no election does A waste votes—in the first six districts, they only cast

as many votes as are needed to win the district, and in the last five, they

cast no votes. Thus, B wastes 55 votes—45.4% of the votes cast, and 64.7%

of the votes cast for B—while A, the party in control of the redistricting,

wastes no votes.

1.3 The Voting Rights Act of 1965

The Voting Rights Act of 1965, passed during the height of the Civil Rights

Era, outlawed voter disenfranchisement on the basis of race. The Act created

an enforcement mechanism for the voting rights guaranteed by the Fourteenth

and Fifteenth Amendments. The VRA is divided into 19 sections, three of

which are of particular importance here: Section 2, Section 4(b), and Section

5.

Section 2 reads in its entirety:
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“No voting qualifications or prerequisite to voting, or standard,

practice, or procedure shall be imposed or applied by any State

or political subdivision to deny or abridge the right of any citizen

of the United States to vote on account of race or color.”7

Section 2 specifically enjoins any behavior that can be used to make voting

more difficult for racial minorities, protecting the right to vote regardless of

race enshrined in the Fifteenth Amendment. That broad provision has been

used, among other things, to strike down racially gerrymandered district

maps.

Section 5, which was designed to ensure state compliance with Section 2,

requires certain jurisdictions to submit any change to their voting practices—

including, notably, any and all changes to their district plans—to the Depart-

ment of Justice for approval. Which jurisdictions are subject to Section 5

was determined by the preclearance rule in Section 4(b), which, despite being

amended periodically to reflect changes in racially discriminatory behavior,

was struck down as unconstitutionally outdated in 2013. Now, the only way

for a jurisdiction (generally states) to be subject to Section 5 is for a court

to “bail in” that jurisdiction, which rarely happens.

Although the VRA is considered one of the most effective pieces of civil

rights legislation in American history, its critics have noted that Section

5 has had the unintentional effect of worsening racial gerrymandering. In

particular, it’s been noted that Republican leaders have used a requirement

that a certain percentage of every state’s districts be majority-minority (to

the extent possible)—a requirement created to prevent cracking of minority

votes—as an excuse to pack their votes instead. (See, for example, [25]

and [27] for a further discussion of how the GOP used the VRA to their

advantage.)

7Voting Rights Act of 1965, Pub. L. No. 89-110, 79 Stat. 437 (1965).
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1.4 Redistricting and the Supreme Court

For the majority of its history, the Supreme Court held that redistricting was

a question of a “political nature”8, thus rendering it outside of the realm of

questions that could be answered by the Court.9 But, starting in 1962, the

Court reversed itself and started to hear districting-related cases. This sec-

tion discusses three important “lines” of cases, as well as recent developments

that may affect the future of gerrymandering.

1.4.1 “One person, one vote”: Baker, Reynolds, and

Wesberry

Colegrove (see the footnote above) decreed redistricting questions to be out-

side the purview of the Court. The Warren Court reversed that decision,

however, in Baker v. Carr 10. At the time, the Tennessee state district plan

contained rural districts far more sparsely populated than the urban dis-

tricts. The case hinged on an equal-protection argument derived from the

Fourteenth Amendment; the Tennessee state legislature cited the political-

question doctrine, claiming that the Court couldn’t provide a remedy. Justice

William Brennan’s plurality opinion articulated a test of justiciability, which

found against the district map11.

Baker instituted the requirement that at least one chamber of the state

legislature should have districts of equal population. Reynolds v. Sims12 ex-

panded on this, holding both chambers to what Chief Justice Warren termed

8Colegrove v. Green, 328 U.S. 549 (1946).
9The political question doctrine, set forth in Marbury v. Madison, 5 U.S. 137 (1803),

holds that some questions are better decided by the people than by the Court, making
them undecidable by the Court. See Political Questions, Public Rights, and Sovereign
Immunity, 130 Harv. L. Rev. 723 (2016).

10369 U.S. 186 (1962).
11However, because Brennan’s opinion failed to attract a majority, the decision was

simply sent back to the lower court.
12377 U.S. 533 (1964).
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“one man, one vote” in his opinion for the majority. Because the require-

ment was imposed on both chambers, whereas State Senates had typically

functioned like the U.S. Senate and represented counties equally, they now

functioned like their lower-house counterparts and also represented their dis-

tricts proportional to their population. Wesberry v. Sanders13 bound Con-

gressional districts to “one person, one vote,” but, unlike Reynolds, did not

impose the same requirement on the Senate.

1.4.2 Racial gerrymandering: Gingles and Shaw

Baker declared redistricting questions to be justiciable. The Voting Rights

Act added a significant avenue for claims to be brought before the Court

against racial gerrymanders. Thornburg v. Gingles14, which invalidated a

North Carolina district map for violating Section 2 of the VRA, laid out a

set of preconditions for future Section 2 claims, called the “Gingles factors”.

In particular, if a minority group is geographically compact and numerous

enough to be able to form a majority in a reasonable district, votes as a bloc,

and is opposed by a majority that also votes as a bloc against the interests

of the minority, then that minority could have a claim against the state for

diluting their vote.15

However, Shaw v. Reno16 found that district plans that consider race as

a factor must be held to the standard of strict scrutiny.17 Shaw involved

13376 U.S. 1 (1964).
14478 U.S. 30 (1986).
15The Gingles factors are merely preconditions; that is, a minority could show the

existence of all three factors without proving that a district map is discriminatory.
16509 U.S. 630 (1993).
17The term originates from Footnote 4 of Chief Justice Stone’s opinion in United States

v. Carolene Products, Co., 304 U.S. 144 (1938). The doctrine of strict scrutiny, broadly
speaking, holds that laws that discriminate against a particular minority must be held to a
higher standard to pass Constitutional muster. In particular, the footnote asks “whether
prejudice against discrete and insular minorities may be a special condition, which tends
seriously to curtail the operation of those political processes ordinarily to be relied upon
to protect minorities, and which may call for a correspondingly more searching judicial
inquiry.”
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another North Carolina district map, but unlike in Gingles, the plaintiffs

were white and claimed reverse discrimination, arguing that black votes were

unnecessarily magnified. Shaw forced states to walk the thin line between

unnecessarily racially-motivated (unconstitutional under Shaw) and not rep-

resentative enough of minorities (illegal under the VRA).

1.4.3 Partisan gerrymandering: Davis, Vieth, and LU-

LAC

The picture is a little murkier for partisan gerrymandering. In Davis v.

Bandemer 18, the Court declared partisan gerrymandering claims to be jus-

ticiable under the Fourteenth and First Amendments, but limited the cases

in which those claims could be brought before the Court. Then, in Vieth

v. Jubilerer 19, a plurality voted to reverse Davis and declare partisan gerry-

mandering claims non-justiciable. Justice Kennedy’s concurrence, however,

declined to do so, and left open the possibility of striking down a partisan

gerrymander, but only if a reasonable standard were to be presented to the

Court: “I would not foreclose all possibility of judicial relief if some limited

and precise rationale were found to correct an established violation of the

Constitution in some redistricting cases.”20

Recently, in 2006, the Court heard a challenge to the 2003 Texas redis-

tricting, in League of United Latin American Citizens v. Perry21. Prior to

2003, the state legislature failed to reach a decision on a district map, so

a panel of judges drew the map in accordance with state policy. In 2003,

however, after the Republican Party won control over the Texas Senate (see

the Introduction to this paper), the map was redrawn, ostensibly to favor

the Republicans (thus leading to the Democratic six-vote loss in the 2004

18478 U.S. 109 (1986).
19541 U.S. 267 (2004).
20Vieth, Kennedy, J., concurring.
21548 U.S. 399 (2006).
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elections). Though the map was not just highly favorable to Republicans

but also drawn in the middle of the decade, after a plan had already been

instituted, the Court in LULAC failed to find evidence of an unconstitu-

tional partisan gerrymander, only striking down one district on a claim of

unconstitutional racial vote dilution under the Gingles test. The decision in

LULAC, however, was highly fractured, resulting in six different opinions.

No decision was made (that is, no opinion attracted a majority) on partisan

gerrymandering.

1.4.4 Shelby County and the future of the VRA

A year after the VRA was passed, the law was brought before the Supreme

Court in South Carolina v. Katzenbach22, where a unanimous Court, in an

opinion authored by Chief Justice Warren, found that the majority of the

VRA was constitutional. (Justice Hugo Black concurred in part, but would

have struck down Section 5, the preclearance requirement, as unconstitu-

tional.) Recently, however, in 2013, the Court once again faced a challenge

to the VRA in Shelby County v. Holder 23. This time, the 5-4 decision struck

down Section 4(b), the coverage formula for preclearance, as unconstitu-

tional, finding that the formula was fundamentally rooted in data from the

1960s and thus too outdated to be a good standard. Although Shelby County

didn’t explicitly strike down Section 5 as well, thus leaving the preclearance

requirement intact, it is effectively toothless, since no jurisdiction is subject

to it by default. (See [26] for a discussion of the future of the VRA after

Shelby County.)

22383 U.S. 301 (1966).
23570 U.S. 2 (2013).
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1.4.5 Gill and the future of gerrymandering

In October 2017, the Court heard arguments in the highly-anticipated Gill v.

Whitford, a case centering around the constitutionality of partisan gerryman-

dering. At the core of the discussion in Gill is the efficiency gap, a proposed

measurement of partisan gerrymandering (discussed in more detail below).

The expectation is that Justice Kennedy will be the swing vote in the case;

if the efficiency gap satisfies his challenge for a standard of partisan gerry-

mandering issued in Vieth, he may side with the liberal wing of the Court in

finding the practice unconstitutional. (See [35] for a deeper discussion of the

background of Gill.) The Court is expected to issue a decision in June 2018.

1.5 Combating Gerrymandering

In the absence of judicial action on partisan gerrymandering, several indepen-

dent initiatives have sprung up to try and curtail the practice. This section

discusses four of these: the attempt to establish a quantitative measure for

gerrymandering, the attempt to democratize the redistricting process, the

attempt to automate the redistricting process, and the attempt to modify

the American system of legislative elections.

1.5.1 Quantifying Gerrymandering

Justice Kennedy’s concurrence in Vieth left open the possibility for partisan

gerrymanders to be struck down under a consistent standard (or set of stan-

dards). Three such standards are discussed here: compactness, the efficiency

gap, and redistricting probability distributions.

Compactness

Texas’ 35th district (see figure 1.1) is one of the most blatantly gerryman-

dered districts in the country. Snaking along a sparsely populated tract
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Figure 1.1: Texas’ 35th District.

of Interstate 35 between Austin and San Antonio, connecting two largely

Democratic areas of both cities, the district is guaranteed to be held by

the Democratic Party. The district captures most of the Democratic vote

in Austin, leaving the rest of the heavily Democratic city divided into four

other districts (TX-10, 17, 21, and 25), all of which are strongly Republican.

It’s not hard to look at the long, snaky shape of the district and conclude

that a more normal district plan wouldn’t include a district that looks like

TX-35. The formal measurement of the oddness of the district is known

as “compactness”, and refers to any measure that attempts to quantify the

regularity or irregularity of a geometric object. As mentioned above, 18 states

require that their Congressional districts pass muster in a compactness test.

One of the most common compactness metrics is known as the isoperi-

metric inequality, and measures the ratio of the area of the shape to the area

of a circle with the same perimeter. Formally, if L is the perimeter and A is

the area, then the isoperimetric inequality is given by

4πA

L2
≤ 1,

22



where equality holds if the shape is a circle. This metric forms the basis of the

Polsby-Popper test, which is cited as the most commonly used compactness

test. (For a survey of other geographic measures, see [16].)

However, purely geometric analysis of partisan gerrymandering has been

criticized as reducing the problem to one of drawing pretty shapes and ig-

noring the need to represent people well. (See [30] for a deeper discussion

of this criticism.) Some authors (see, for example, [19]) have proposed met-

rics that measure the distance between voters and the geometric centroids

of their districts. Those metrics allow for districts that respect population

distribution.

The Efficiency Gap

In 2015, Eric McGhee and Nicholas Stephanopoulos proposed the “efficiency

gap” standard (see [31]), which is now at the center of the claim in Gill.

It measures the percentage of votes wasted in an election (see above for a

discussion of wasted votes) relative to the total number of votes cast, and

uses that percentage to calculate the number of seats which may have been

decided as a result of partisan gerrymandering.

Suppose that party A wastes a votes, and party B wastes b votes. Then

the efficiency gap is measured as

e =
|a− b|
a+ b

,

and is the percentage of seats that might have gone to the party with more

wasted votes, had those votes not been wasted. So, for example, if e = 0.3

across elections in ten districts, then the party that wasted more votes might

have won three more seats, had those votes not been wasted.

Because of its relation to the packing and cracking strategy—packed votes

are wasted because they provide unnecessary support to the winner, and

cracked votes are wasted because they go to the loser—the efficiency gap has
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been proposed as a metric to measure partisan gerrymandering. McGhee

and Stephanopoulos originally proposed that any district map with e > 0.2

in state-level races or more than two wasted seats in Congressional races could

be considered presumptively unconstitutional. In the election described in

table 1.1, for example, a = 0 and b = 55, so

e = −55

85
= 0.647,

and thus, since 64.7% of 11 is 7.12, and b > a, party b might have won a

staggering 7 more seats had they not been the victims of partisan gerryman-

dering.

The District Court for the Western District of Wisconsin found the effi-

ciency gap justiciable in their decision. Their decision, however, only binds

that district; the Supreme Court’s decision will bind the entire country. If

they uphold the Western District’s decision, the Court will, for the first time,

institute a formal, quantitative test of partisan gerrymandering, potentially

paving the way for an overhaul of every state’s redistricting practices.

Probability Distributions

Recently, a team at Duke University [29, 32] led by Jonathan Mattingly de-

vised a new way of measuring the “goodness” of a district map. Any district

map can be measured with some utility function (population equality among

districts, compactness, etc.), but it’s difficult to tell in isolation whether

that score legitimately reflects the quality of the map or merely reflects the

underlying space (that is, no better districting exists).

Mattingly’s team instead uses the Metropolis-Hastings variant of the

Monte Carlo algorithm to sample a probability distribution over the space

of valid district maps. This approach can be used to find the probability of

a district map occurring given a random selection from the space of district

plans, and was used to show that the post-2010 census North Carolina dis-
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trict map was highly unlikely, especially compared to a map proposed by an

independent expert panel.

1.5.2 Public Redistricting

Four states grant control of the redistricting process to independent commis-

sions, but these commissions are generally comprised of experts nominated

by state party leaders. California has a much more involved process. The

commission consists of 14 citizens—five Republicans, five Democrats, and

four nonpartisans—semirandomly selected from a pool of 60 highly qualified

experts, as determined by a state board. The commission has come under fire

from politicians, whose incumbency may be challenged by the commissions’

district maps (which, as is the norm, are not reviewable by the state legis-

lature). A similar commission in Arizona was challenged on constitutional

grounds (the petitioners claiming that Article I, Section 4’s grant of redis-

tricting authority to the state legislatures was violated by the commission’s

independence), but the Court voted to uphold the commission.24

The California commission raised an interesting question—can citizen

commissions do a better job of drawing district maps, and, more broadly,

can ordinary people, not necessarily gerrymandering experts, draw good dis-

tricts? Recently, a number of open software packages—see, for example,

[37]—have opened up the process to anyone who has access to a computer. A

number of groups have run redistricting competitions—FixPhillyDistricts25,

for example, was aimed at drawing better city council districts.

The impact of these projects is yet to be seen (see [22], for example, for

a discussion of the impact of public redistricting projects). It’s not incon-

ceivable, however, that more states will follow in the California model. And,

although the chances of their being instituted as law are small, public redis-

24See Arizona State Legislature v. Arizona Independent Redistricting Commission, 576
U.S. (2015).

25http://www.fixphillydistricts.com/.
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tricting competitions could help to broaden public awareness of the problems

and potential issues latent in redistricting.

1.5.3 Algorithmic Redistricting

As mentioned above, the idea of using computers as a tool in drawing dis-

tricts has been around since the 1960s [18]. Computers have been used

repeatedly as tools to assist in the creation of district maps—Maptitude and

DistrictBuilder are both prominent software packages used in some capacity

to make districts—but only recently have computers gained the capacity to

draw districts entirely from scratch. Few such projects have gained signifi-

cant notoriety, but as computers continue to scale and as data continues to

become available, it’s not unlikely that the redistricting process will involve

less and less human influence. The remainder of this paper discusses this

idea in far greater detail.

1.5.4 Alternatives to Redistricting

Finally, a number of proposed modifications to the American electoral system

would render obsolete the practice of gerrymandering. Some have proposed

alternative systems of voting altogether—the Fair Represention Act (H.R.

3050, 2017), proposed by Don Beyer (D-VA), would “establish the use of

ranked choice voting in elections for Representatives” and “require States

to conduct Congressional redistricting through independent commissions,”

among other provisions. While the Act could threaten the current majority

in the House and is thus unlikely to even make it out of committee, Beyer’s

proposal and others like it could end gerrymandering as a tool to gain partisan

advantages. (See [33] for a discussion of the proposal.)

Others have proposed a game-theoretic solution to gerrymandering. By

approaching redistricting as a competition between two rational actors (namely,

the two parties), Landau and Su [28] devised a system by which the two
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parties would collaboratively draw district maps in a fashion similar to two-

player cake-cutting (see, for example, [40]). Broadly speaking, one party

would make a “cut” of the state, but the other party would choose a “slice”

to gerrymander, thus creating a framework where each party could, through

intelligent cutting, limit the potential of the other party to effect a gerry-

mandered advantage.

1.6 Conclusion

Redistricting is a difficult problem to solve, and even good-faith approaches

can yield undesired results. Meanwhile, gerrymandering can subtly under-

mine the process in a way that’s difficult to measure. The VRA, the only

significant federal action addressing the problem, has enjoyed tremendous

success at ending racial discrimination at the voting booth, but has yet to

prove effective in combating discrimination at the mapmaking level. Further-

more, the Court has declined to act, despite being given many opportunities

to do so, citing reasons from nonjusticiability to a lack of a justiciable metric.

That may change in Gill, however.

A variety of approaches have been suggested to end gerrymandering,

among them several computational solutions. Coupled with the right met-

ric, a computational approach may prove to be the silver bullet in ending

partisan gerrymandering. The next chapter further explores this idea of ger-

rymandering as a computational problem.
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Chapter 2

Gerrymandering as a

Mathematical Problem

Chapter 1 introduced the idea of gerrymandering as a political problem, one

that in effect pits politicians against their own constituents. But gerryman-

dering is more than just a political issue. At its core, the problem of redis-

tricting is a mathematical one, as follows. Suppose we have a bounded region

of the Cartesian plane, S ⊂ R2, and a population function p : 2S → Z+ that

takes subsets of S to integers. In particular, p is subject to the restrictions

that for any two subsets A and B of S, p(A ∪B) = p(A) + p(B)− p(A ∩B)

and that P (∅) = 0. A district map of S that divides S into d districts is

equivalent to a partition P = {P1, P2, . . . , Pd} of S, such that p(Pi) = p(Pj)

for all i and j.1

This is, of course, a very simple definition of redistricting that only re-

quires population equality. As we have seen, the requirements of a valid

district map vary, and are considerably more complex. Moreover, in order

for a practical solution to be reached, a more concrete model than the one

sketched above is needed. This chapter details that model, and lays the

1A partition of a set X is a set P = {X1, . . . , Xn}, such that Xi ⊂ X for all i,

Xi ∩Xj = ∅ for all i and j, and
⋃
i

Xi = X.
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groundwork for the discussion of the technical implementation in Chapter 3.

2.1 Modeling Redistricting

Given the problem as stated above, redistricting boils down to partitioning

a region of space into non-overlapping sections. There are two ways of mod-

eling this problem: the continuous model, where the space is assumed to be

infinitely divisible, and the discrete model, where it’s assumed to consist of

indivisible atoms that can be arranged.

Redistricting within the continuous model is the domain of the shortest-

splitline algorithm, developed by the Center for Range Voting. The algorithm

takes as input a state S and the number of districts d, and works as follows:

1. If d = 1, return S.

2. Let a = dn
2
e and b = bn

2
c, such that n = a+ b.

3. Find L, the set of all line segments ` that divide the state into regions

A` and B` with a population ratio of a : b.

4. Let `∗ be the shortest such line segment, and denote its resultant regions

A`∗ and B`∗ . Recurse on each, with district counts a and b.

This algorithm will result in n districts of equal population, but suffers for

two reasons. First, while population equality is certainly the most important

requirement, being the only federal one, it is far from the only goal. Moreover,

the assumption the algorithm makes is that any line segment that divides

a state can function as a district boundary. Not only does this assumption

make it all but impossible to maintain political boundaries, it makes it all but

impossible to even maintain property boundaries. That is, a line drawn by

the algorithm could easily end up cutting through a house, causing awkward

issues around which district its residents should vote in.
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This is more than just an issue with the shortest-splitline algorithm. It

is, in fact, a problem with any districting algorithm that operates in the

continuous domain. Whereas a continuous domain assumes an infinitely di-

visible search space, as noted above, a discrete domain allows for atoms. The

smallest possible atom would be at the property level, therefore preventing

houses from being split among districts. Aside from the fact that the number

of distinct properties in the average state is incredibly large, population and

demographic data is not available at the property level.

Instead, there is a slightly coarser level at which we can atomize the

state—the Census block (see Section 1.1 above). Blocks are drawn to respect

city, county, and state boundaries, as well as property boundaries. Districts

comprised of census blocks will therefore respect property lines, avoiding

the kind of divide possible in the continuous model. Drawing districts thus

reduces to the relatively simpler problem of assigning blocks to districts,

which, as discussed above, is computationally intractable. We can reduce

the search space by imposing a graph structure on the block map. How this

is done is described below.

2.2 The Block Graph

A graph is a collection of points V , with some (possibly empty) collection

E of lines connecting the points in V . The points are called vertices (or

nodes), and the lines are called edges. The study of graphs is called graph

theory, and has extensive practical applications in computer science. Graphs

are useful in that they provide a common language for discussion of a wide

range of problems, from map traversal to social network analysis.

Here, we represent the block-level division of a state as a graph, which

we refer to as a block graph. Each block is assigned a vertex, and edges

connect vertices whose blocks share a linear border. That is, blocks that

touch at a single point, like those diagonal to each other in a grid, are not
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Figure 2.1: A graph with five vertices and ten edges. This graph is not planar,
since it can’t be drawn without edges crossing each other. It is connected,
since there is a sequence of edges between every pair of vertices.

connected. A block on an island or that is otherwise disconnected from the

rest of the graph is connected to the “mainland” (so to speak) by an edge

connecting it to the block whose centroid is closest to its own. Formally,

then, if the vertex set is V , the edge set is given by E = A ∪ B, where

A = {(u, v) | u, v ∈ V and blocks u and v share a border} and

B = {(u, v) | ∀ v′ ∈ V (u, v′) /∈ A and v = arg min
v′∈V

dist(u, v′)}.

In order to define the redistricting problem in the language of graphs, it’s

useful to introduce a few definitions. A path between two vertices u and v

is a sequence of edges, P = {(x1, x2), (x2, x3), . . . , (xn−1, xn), where x1 = u

and xn = v. A connected graph is one where every pair of vertices has a

path between them. Finally, for some V ′ ⊆ V , the induced subgraph on V ′

is the graph G′ = (V ′, E ′), where E ′ contains only those edges that connect

vertices in V ′ to each other (that is, E ′ = {(u, v) ∈ E | u, v ∈ V ′}), and is

denoted G[V ′].

Finally, a weighted graph is one that is equipped with a weight function

w : V → R (that is, one that assigns to every vertex a real value), such

that w(v) is the weight of vertex v. (Unweighted graphs can be seen as
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(a) A planar, disconnected graph. (b) A planar, connected graph.

Figure 2.2: Some examples of graphs.

having a weight function w that assigns to every vertex a constant weight.)

Graphs can have multiple weight functions, and the block graph certainly

does. Each block has a population, a number of votes cast for one party, a

number of votes cast for the other, and so on, each of which can be realized

as a weight function from vertices to the real numbers (or more specifically to

the positive integers). Although w technically takes vertices to their weights,

it’s also convenient to introduce the notation w(X) =
∑

v∈X w(x) for some

set X ⊆ V of vertices in the graph.

2.3 The Balanced Connected Partition Prob-

lem

The problem of dividing a state into d districts is equivalent to the problem

of finding a d-partition2 P = {V1, V2, . . . , Vd} (see footnote above) of the

vertices of the block graph, such that the induced subgraphs on each Vi

are connected. Furthermore, given a balance function that gives the total

weight of the smallest partition, B = minVi∈P w(Vi), find the partition that

maximizes B.

That is, find the partition whose subsets both induce connected subgraphs

and are as equal in population as is possible. This problem is known as

the balanced connected partition problem, or BCP, and has been discussed

2A partition consisting of d subsets.
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(a) (b)

Figure 2.3: A planar graph (in this case, a grid graph) G, and a maximally
balanced 3-partition of G.

extensively in the literature. When the graph is unweighted (which, as noted

above, is equivalent to a graph with uniform weight), the problem is known

as 1-BCP, and the balance function B = minVi∈P |Vi| gives the size of the

smallest partition instead of the total weight.

The input to BCP generally contains the graph we wish to partition, as

well as the number of partitions q into which the graph should be divided.

An algorithm that solves BCP is expected to be able to do so for any value

of q. A variant of BCP, called BCPq, relaxes that restriction. An algorithm

that solves BCPq is only required to do so for the specific value of q given

in the problem name; a solution to BCP2, for example, is only required to

partition graphs into two components. A solution to BCP can thus be seen as

a solution to BCPq for all q. (There is an equivalent dichotomy for 1-BCP.)

Figure 2.3 demonstrates a simple example of an unweighted balanced

connected partition. The graph in figure 2.3a, which has 12 vertices, can be

3-partitioned S(12, 3) = 86256 ways, only a handful of which are connected.

Of these, only a handful will be maximally balanced. One of these ways is

demonstrated in figure 2.3b. Since all three connected components are of

size 4, the balance function B = minVi∈P |Vi| = 4 is maximized. Figure 2.4

demonstrates a similar example, but on weighted graphs.
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Figure 2.4: Here, the subgraphs are equal not in size, but in sum of the
weights. Each component has weight sum 18.

2.3.1 Some Complexity Theory

In discussing problems like BCP, it’s useful to define computational “hard-

ness” in some standard way. Computer scientists say that a problem is “easy”

if it can be solved efficiently, which generally means that if the size of the

input is n, there is some algorithm that can solve it using no more than nk

operations for some k. The class of problems with this property is called P ,

or polynomial. (It’s worth noting that since k is arbitrary, it’s unclear that

an algorithm that requires n100 operations for an input of size n is very fast.

In the grand scheme of computational complexity, though, it turns out n100

isn’t actually too bad.)

P stands for polynomial, so it’s commonly assumed that NP stands for

not polynomial. In fact, it stands for nondeterministic polynomial, and refers

to the class of problems whose solutions can be verified in polynomial time.

Any problem in P is obviously in NP , since checking that a solution is

correct is as simple as running the solution-finding algorithm and checking

equality. It’s important to note, though, that the language of NP -ness can

only be discussed for what are called decision problems, which ask a yes-or-no

question (e.g., is n composite?), and not optimization problems, which ask

for an answer that maximizes or minimizes some condition (e.g., what’s the
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shortest path from point a to point b?).

It’s easy to reason about whether a solution to a decision problem can

be checked quickly—for example, if we’re asked if n is composite, and we

say “yes, and here’s a nontrivial factor q,” our answer can be verified quickly

(i.e., by making sure q divides n). On the other hand, optimization problems

are harder to check—if we’re asked what the shortest path between a and

b is, and we say “here’s a path p with length `,” while it can certainly be

checked that p goes from a to b, it’s not clear that there isn’t a shorter path.

Luckily, it’s easy to convert an optimization problem to a decision prob-

lem, and vice versa, as follows. Suppose we have an optimization problem

that asks for a solution that minimizes some function f . The equivalent de-

cision problem is as follows: “Is there a solution whose f -value is at most

k?” It’s possible, by asking the question of at most a logarithmic number

of values of k, to find the solution with the minimal value of k.3 The other

direction is simpler: clearly, any solution to the optimization version of a

problem is a solution to the decision version of the problem.

Suppose there were a fast (that is, in a polynomial number of operations)

way of converting a solution to a problem A into a solution to a problem B.

For example, converting a solution to the problem “Is n composite?” to a

solution to the problem “Is n prime?” is trivial. Suppose further that B was

known to be difficult. Then it must be true that A must also be difficult,

since if a fast solution to A were possible, and there were a fast way of turning

a solution to A into a solution to B, there would be a fast way of solving B

as well. This method of finding what are called polynomial-time reductions

is a common way of proving difficulty by comparison, and are used to define

two additional complexity classes.

The first class is called NP -hard, and contains problems, informally

speaking, at least as hard as the hardest problems in NP . More formally, H

is NP -hard if, for every problem L in NP , there is a polynomial-time reduc-

3That is, performing binary search.
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tion from L to H. NP -hard problems don’t necessarily have to be in NP

themselves, and those that are are referred to as NP -complete. NP -complete

problems are special because a polynomial-time solution to any such problem

is equivalent to a polynomial-time solution to all such problems, and indeed

a fast solution to every problem in NP . If such an algorithm were found,

then P and NP would be equal; the question of whether P equals NP is one

of the most famous open problems today.

2.3.2 The Complexity of BCP

It’s unclear when BCP was first mentioned in the literature, but one of

the earliest and most important results about it is called the Győri-Lovász

Theorem, named for two mathematicians who discovered it independently

(see [3] and [2]). It concerns k-connected graphs, which are graphs that can

“tolerate” the removal of up to k−1 vertices without becoming disconnected,

and is as follows:

Theorem 1 (Győri-Lovász). Let k ≥ 2 be an integer and suppose that G =

(V,E) is a k-connected graph. Let v1, v2, . . . , vk be distinct vertices of G, and

let n1, n2, . . . , nk be integers whose sum is |V |. Then G has disjoint connected

subgraphs G1 = G[V1], G2 = G[V2], . . . , Gk = G[Vk] such that |Vi| = ni and

vi ∈ Vi for all 1 ≤ i ≤ k.

[14] puts the earliest polynomial-time algorithms for q = 2 and q =

3 in the mid-nineties, while [7] appears to be the earliest polynomial-time

algorithm for all q. The Győri-Lovász Theorem is enough, however, to give

the following complexity result:

Theorem 2. q-connected 1-BCPq is in P .

For general graphs, though, Dyer and Frieze (see [5]) showed that 1-BCPq

is NP -hard, and noted that NP -hardness holds for planar graphs when the
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1-BCP BCP
Graph Type 1-BCPq 1-BCP BCPq BCP
general NP -hard [5] NP -hard NP -hard NP -hard
q-connected P [3, 2] P NP -hard [14] NP -hard
planar NP -hard [5] NP -hard NP -hard NP -hard
ladders P [11] P P [11] P
trees P [4] P P [4] P
grids P P NP -hard [10] NP -hard
bipartite NP -hard [5] NP -hard NP -hard [5] NP -hard

Table 2.1: Summary of complexity results for BCP.

size of the partition sets is more than 3.4 Furthermore, Chataigner et al.

(see [14]) showed that BCPq is NP -hard, even on q-connected graphs (thus

negating the possibility of an extension of Győri-Lovász to BCPq).

Table 2.1 gives a small subset of complexity results for BCP. Note that

in general, if on some class of input graphs BCPq (respectively 1-BCPq) for

all q ≥ 2 is NP -hard, then BCP (resp. 1-BCP) on that class must also be

NP -hard. Recall that BCP includes q in the instance. Then, as long as

q ≥ 2, BCP can just call BCPq for that q-value, and the result of BCPq for

that q is equivalent to the solution for BCP. (If q = 1, the partition is just the

original graph, assuming it’s connected.) Similarly, if 1-BCPq (resp. 1-BCP)

is NP -hard, it’s clear that BCP (resp. BCPq) is NP -hard as well, since, as

mentioned above, 1-BCP is simply an instance of BCP where the weight of

every vertex is 1.

2.3.3 Planar BCP is NP -Complete

In the context of redistricting, though, block graphs are guaranteed to be

planar—that is, they can be drawn in two dimensions without edges crossing

4Dyer and Frieze used slightly different notation, where rather than considering the
optimization problem of maximizing the size of the smallest set, they tried to find partitions
where each set has a fixed size k.
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over each other5—which imposes a degree of simplicity on the structure of

the graph. It’s obvious that by implication, since it’s known that planar

1-BCP is NP -hard (see [5]), planar BCP should be NP -hard as well. This

paper contains a simpler proof of that fact, using a reduction from the subset

sum problem.6

The subset-sum problem asks for, given a list of numbers X of size n

and a desired sum T 6= 0, a subset of the list X ′, such that
∑

x∈X′ x = T .

Consider the following strategy for finding a solution to subset-sum:

1. Let G be a graph with two sets of vertices, one of size n and another

of size 2, such that the nodes in each set are connected to every node

not in their own set. Assign to the vertices in the size-n set weights

x1, . . . , xn. Let S =
∑

x∈X x, and assign weight S − 2T to one node,

denoted n, and weight 0 to the other node in the size-2 set. (See figure

2.5.) Note that G is planar.

2. Find a connected 2-partition of V , P = {V1, V2}, such that w(V1) =

w(V2) = S − T .

3. Assume without loss of generality that n ∈ V1, and note that V1 cannot

equal {n} (since w({n}) = S − 2T , not S − T )7. In particular, V1 =

{n} ∪X ′, where w(X ′) = (S − T )− (S − 2T ) = T . Thus, V1 \ {n} is a

solution to subset-sum.

Note that step 2 is equivalent to solving BCP2 on the planar graph G

defined in step 1. Subset-sum is known to be NP -complete, however. There-

fore, if planar BCP2 were in P , subset-sum would also be in P , since the

5To see this, note that any map-like graph whose geographical equivalent is in two
dimensions can be represented by a planar graph.

6To our knowledge, planar BCP has never been investigated directly. The reduction
from subset sum only works for BCP and not 1-BCP, since unary subset sum is in P .

7This could work if T = 0, but a solution to subset-sum with T = 0 is trivially the
empty set.
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x1

x2

...

xn−1

xn

S − 2T 0

Figure 2.5: A 2-partition of this graph will necessarily contain one component
with the node with weight S − 2T , along with some subset of the xi’s that
sum to T .

strategy above reduces a solution to BCP2 to a solution to subset-sum in

polynomial time. We therefore arrive at a contradiction, and therefore:

Theorem 3. BCP2, even when restricted to planar graphs, is NP -complete.

Extending this to planar BCPq is straightforward. Note that the weight

of node n is such that S + w(n) = q(w(n) + T ), where q is the number of

partitions into which G is divided. Thus, for general q,

w(n) =
S − qT
q − 1

.

Whichever partition contains node n will necessarily also contain some subset

of X that sums to T . This carries forward to BCP as well, since if BCP were

not NP -complete, BCPq could be solved quickly, simply by passing the input

graph as well as q (which is known, not passed as input) to BCP. And thus:

Theorem 4. BCP, even when restricted to planar graphs, is NP -complete.
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Thus, unfortunately, redistricting in the discrete graph model is NP -

complete. This implies that any discrete model, in fact, cannot be districted

quickly. There are approximation algorithsm for certain flavors of BCP,

but it is known that BCP in general can’t be approximated well.8 There

are no approximation algorithms in the literature for planar BCP, which is

the problem we wish to solve, and it’s conceivable that there may exist a

reasonably accurate one that can be found. We study a different approach,

as detailed in the next section.

2.3.4 Some Other Complexity Results

There are two other complexity results in redistricting that are worth men-

tioning before moving on. First, packing and cracking is NP -complete; see

[17] for a discussion of this problem. Furthermore, gerrymandering in the

Israeli context, which differs slightly from the American one, is also NP -

complete. In this system, rather than being placed into districts, voters are

permitted to vote at ballot boxes anywhere around the country, but are gen-

erally assumed to vote in the box closest to them. Politicians can choose to

activate only a subset of ballot boxes, thus forcing voter behavior.

The question thus becomes: given knowledge of the voters’ policy pref-

erences (i.e., who they intend to vote for), is it possible to figure out which

subset of the ballot boxes should be chosen, such that at each active box

the plurality or majority of votes go to a desired candidate? The answer is,

perhaps unsurprisingly, no; for more detailed discussion, as well as a study

similar to this one on the potential of artificial intelligence in providing ap-

proximate solutions, see [34].

8That is, if α is the ratio of the balance function on the optimal partition to the balance
function on the approximated partition, called the approximation ratio, it’s known that
no algorithm exists for which α is less than or equal to 6/5.
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2.4 Moving Past NP -Completeness

NP -completeness, which (assuming P 6= NP ) implies that BCP can’t be

solved quickly and deterministically by a computer, adds some difficulty to

the problem of algorithmic redistricting. Thus, no algorithm can operate

in polynomial time that guarantees a correct solution. This is, however, a

very strict constraint. Instead, we can observe that the maximally balanced

partition is one element of a (very, very large) set of connected partitions,

some of which may not be balanced. This set in turn is a subset of the set

of all d-partitions, not all of which are guaranteed to be connected. Thus,

by enumerating all possible ways of partitioning a graph into d components,

we are guaranteed to eventually find the maximally balanced partition.

This approach suffers from the obvious setback that to do so would take

an unreasonable amount of time, because even for relatively small graphs,

the space of all d-partitions is enormous. (Recall that in a graph with just 12

components, there there are over 86,000 ways of partitioning it into 3 com-

ponents.) Finding elements in search spaces of this magnitude—sometimes

referred to as combinatorial search spaces—is the domain of artificial intelli-

gence, and it is from there that we draw our approach.

2.4.1 Hill Climbing

In the definition of BCP, we’re given a balance function B that takes elements

of the space of partitions of a graph G to the integers. The goal is to find

the partition P that maximizes B. If B were differentiable, we could set the

derivative equal to zero and solve for the maximizing function. It’s clear,

though, that B is not. In fact, B’s behavior over the space of partitions

is relatively unpredictable, making any kind of analysis of its maxima and

minima impossible.

The goal of local search is, given such an unpredictable function, to find

its extrema. Broadly, the approach is characterized by algorithms that take
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a point (generally chosen randomly) in the space and investigating its neigh-

bors, trying to find the direction with the steepest gradient and moving in

that direction. In order to do so, the space must be endowed with some kind

of locality, such that states have well-defined “neighbor” states.

There are a variety of approaches to local search, but the simplest is

known as hill-climbing. The algorithm is simple:

1. Choose a random state S.

2. Let N(S) be the neighbors of S, and let N∗ = arg maxN∈N(S)B(N).

3. If B(N∗) <= B(S), return S. Otherwise, set S = N∗ and repeat.

The algorithm terminates only when the best neighboring state is no

better than the current state. (Some variants continue even if B(N∗) = B(S)

in step 3, but it’s easy to see that unless every visited state is stored to ensure

no states are repeated, which would take a lot of memory, this process can

continue infinitely.)

The obvious problem with hill-climbing is that the algorithm returns

states that are only better than all of their neighbors—but not necessar-

ily the state that’s better than every other state. That is, the algorithm

can get “stuck” at local extrema, ignoring global ones. An approach called

simulated annealing addresses this problem by allowing movement to lower-

utility states with some probability p. As the algorithm continues, the prob-

ability decreases, favoring risk-taking at the beginning but becoming more

risk-averse over time. The choice of p is important, though; for small values

of p, the algorithm is not much better than hill-climbing (which, in effect,

is simulated annealing with p = 0), and for large values of p, even global

maxima will be skipped over.

Another approach is to run hill-climbing or simulated annealing multiple

times, perhaps in parallel, and choosing the best value from all of the runs.

The idea is that the more restarts happen, the better the chances will be that
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(a) (b) (c)

Figure 2.6: Hill-climbing in action. The curve is a map from state space
to utility, and the goal of the hill-climbing algorithm is to find the global
maximum. The algorithm starts by choosing a random starting position
(figure 2.6a), and moves in the direction that increases the score. Eventually,
it gets to a point where it can’t do so any more; this is a maximum of
the curve (figure 2.6b). However, since this approach isn’t guaranteed to
find global maxima, the hill-climbing variant used in this work picks several
random starting points, finds the closest maximum to each, and returns the
maximum of those peaks (2.6c). As the number of random restarts increases,
the probability of finding the global maximum increases as well.

a decent candidate will be found. This has some merit, but for search spaces

as large as the set of partitions of a graph the number of random restarts

needed can be intractable.

Although hill-climbing is simple in theory, the choice of the search space,

and the definition of a valid move in the space, is an important one. Con-

sider BCP as an example. The narrowest possible search space would only

include partitions whose sets were equal in weight. The broadest possible

search space would include any partition of the vertices, including those that

wouldn’t induce connected subgraphs. Finding initial elements in the former

would be equivalent to solving BCP itself, but finding extrema in the latter

would take a long time. Hill-climbing works best when the search space is

small enough that solutions don’t occur infrequently, but large enough that

it isn’t hard to find initial states or valid moves.
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2.4.2 Genetic Algorithms

Another approach to local search takes inspiration from biological evolution.

At a very high level, evolution can be seen as the interaction of DNA. Two

members of a population mate and combine their DNA in some fashion, which

yields another member of the population. Evolutionary algorithms work very

similarly. Every element of a search space is mapped to a chromosome9. In

the beginning (so to speak), these chromosomes are arbitrary, and over time

experience growth in three stages:

1. Selection, the first stage, is the process by which members of the popu-

lation are chosen for genetic combination. Selection methods vary, but

generally members of the population are chosen based on their fitness.

Some approaches, for example, choose parents randomly such that the

chances that a member will be chosen is proportional to its fitness.

2. Crossover, the second stage, is the process by which two parents com-

bine their chromosomes to yield children (generally two). Generally,

some crossover point is chosen, such that one child will have parent

A’s genetic material up to that point and parent B’s genetic material

afterwards (and vice versa for the other child). Some algorithms choose

a single crossover point, while others choose multiple.

3. Mutation, the final stage, randomly changes some part of the chromo-

some with some probability p. Generally speaking, p decreases over

time, as the population becomes more stable (so to speak), although

this differs from algorithm to algorithm.

Genetic algorithms work best when the problem has some degree of lo-

cality. In general genetics preserve sequences of base pairs (called genes)

that have a high impact on the fitness of an individual. Locality, where two

9Chromosomes are most easily considered as arrays, which is analogous to the base-pair
sequences of real DNA.
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base pairs being close to each other on the chromosome implies some rela-

tion between them in the phenotype (that is, the member of the population

generated by the chromosome), is thus more conducive to rapid discovery of

maxima in the search space.

One major issue with genetic algorithms is that while the framework

doesn’t change much from problem to problem, it’s only a framework, and

requires the designer to make a number of choices along the way. There are

a variety of methods of performing selection, crossover, and mutation, which

have been documented extensively in the literature (see, for example, [8] for

a survey). But perhaps the most important decision that has to be made is

the choice of chromosome encoding.

Although chromosomes can technically be any arbitrary data structure,

it’s most common to represent chromosomes as arrays, which is similar to

the way chromosomes are represented as sequences of base pairs in real-world

evolution. The choice of array, though, and the meaning of each element, can

have a dramatic effect on the efficacy of the algorithm, similar to how the

choice of search space can make a big difference in hill-climbing.

Another major issue with genetic algorithms is that they can often get

close to a good solution without ever reaching it. Because the relationship

between parents and children is random, genetic algorithms are bad at hyper-

local optimization. For this reason, some approaches, so-called “memetic”

approaches, perform local search, like hill climbing or simulated annealing,

after every generation. This comes at a performance cost, but has the ad-

vantage of restricting the population to local maxima only.

A further problem with genetic problems is that, depending on the choice

of selection, crossover, and mutation operators, the population can often

quickly converge to the best element in the current population, preventing

any further optimization. After a certain point, of course, this is a good thing,

but unless the algorithm happens to start with a very strong population that

contains a global maximum, this can lead to premature convergence to a
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non-optimal solution. This can be mitigated in several ways, for example

by ensuring that the mutation rate is high enough to “force” generation of

children whose genetic material differs from the rest of the population, or

by allowing the selection operator to choose non-optimal, but genetically

diverse, parents.

2.4.3 Multi-Objective Optimization

Up to this point, we’ve described local search algorithms that try and maxi-

mize a single objective function, like BCP’s balance function. In many cases,

though, it’s desirable not just to maximize one function but to find the ele-

ment of the space that maximizes multiple functions. This class of problems

are generally known as multi-objective optimization.

The challenge of MOO is that it is very infrequently the case that a single

element can maximize multiple functions at the same time. For example,

consider a modification to BCP that combines the weighted and unweighted

problems and seeks to find the partition of a weighted graph that doesn’t

just balance the total weights of the partitions but also the total sizes of the

partition. It may be straightforward to find a solution that maximizes one

of those two constraints, but finding one that balances both is difficult. It’s

also not guaranteed that any solution that maximizes one will maximize the

other.

One way of solving this is by assigning weights to the score functions and

taking their sum as the overall score function. For example, suppose the

goal of a given MOO problem were to maximize a set F = {f1, f2, . . . , fn}
of n objective functions. Let W = {w1, w2, . . . , wn} be real values. Then

the instance of MOO can be converted into a single-objective optimization

problem by trying to maximize f ∗(x) = w1∗f1(x)+w2∗f2(x)+. . .+wn∗fn(x).

This approach has the upside of reducing the complexity of the prob-

lem to a well-understood one, but has the downside of requiring manual

selection of the weights. This can become difficult for non-normalized (or
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non-normalizable) weights, where, for example, the upper bound might be 0

but the lower bound might be −∞, making comparisons between objectives

for the purposes of scoring difficult. This can be resolved with enough tween-

ing of the weights, but may take a while and requires considerable manual

labor.

The most frequent approach, however, is simply to redefine the concept of

optimality. In the single-objective context, an optimal state is one in which

no neighboring state has a higher objective value. In the multi-objective

context, an optimal state is one where no neighbor is better along every

single objective axis. In other words, if F = {f1, f2, . . . , fn} is the set of

objective functions, then a state S is optimal in the multi-objective context

iff, for all neighboring states N ,

∀ f ∈ F f(N) ≤ f(S).

States that obey this property are called Pareto optimal.10 So, whereas

single-objective hill climbing accepts any move for which f(N) > f(S), multi-

objective hill climbing can only accept moves where two conditions hold:

1. For all objective functions f ∈ F , f(N) ≥ f(S).

2. For at least one objective function f ∈ F , f(N) > f(S).

A state N that satisfies both of these properties is said to dominate S.

Dominance is a partial order, rather than a total order, and so it’s possible

for a set of states S to be divided into subsets S1,S2, . . . ,Sm such that for

all i < j, every element of Si dominates every element of Sj, but no two

elements in the same set dominate each other. S1, the subset whose elements

10In fact, states for which f(N) doesn’t equal f(S) for all f are called strongly Pareto
optimal, and states for which f(N) = f(S) for all f are called weakly Pareto optimal.
For reasons similar to those discussed above, though, strong Pareto optimality is generally
preferred in the computational context.
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dominate every other element in the state space, is also called the Pareto

frontier.

The goal of MOO algorithms is often to return this Pareto frontier in an

efficient manner, but doing so can be difficult. Nearly every single-objective

approach, including genetic algorithms, can be adapted to the multi-objective

context.

2.5 Conclusion

Gerrymandering is more feasibly interpreted as a computational problem in a

discrete domain, where block-sized atoms preclude the possibility of districts

that split houses. The abstraction of a graph equips us with a mathematical

language to describe the problem, which is called the balanced connected

partition problem. Unfortunately, BCP is NP -complete, which makes find-

ing the best district map of a state hard to do quickly and deterministically.

Search approaches, in particular hill climbing and genetic evolution, can nev-

ertheless yield good solutions, although with a speed-quality tradeoff.

This chapter laid out at a very general level the ideas necessary to discuss

our approach. The next chapter discusses our solution in detail, and assumes

familiarity with both this chapter and the previous one.
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Chapter 3

Evolutionary Redistricting

Chapter 1 discussed the problem of gerrymandering in detail. Chapter 2 laid

out a theoretical foundation for a mathematical approach to redistricting.

The rest of this paper focuses on our main technical contribution: a new

system of drawing districts, rooted in graph theory and evolutionary algo-

rithms. The model and the theory are briefly laid out in the first section,

after which the various algorithms used are described in considerable detail.

We also discuss some issues encountered during the implementation of our

algorithm.

3.1 The Block Graph Revisited

Chapter 2 discussed the block graph in some detail, but it’s useful to redefine

the graph here. Formally, let B be a collection of blocks in a state, which can

be realized as closed shapes that partition a polygon (the state) on a plane.

Blocks b1 and b2 are neighbors iff their boundaries intersect at a line (such

that blocks that touch only at a point are not interpreted as neighboring).

A block with no direct neighbor b is interpreted as the indirect neighbor of

the block b′ whose centroid is closest to its own.

The block graph G = (V,E) is defined as follows. Each block b ∈ B is

49



assigned a vertex vb ∈ V , and

E = {(vb1 , vb2) | b1 and b2 are neighbors}.

A valid district map is a d-partition of V into d sets P = {V1, V2, . . . , Vd}
such that G[Vi] is connected for all i. In this paper, we define three functions

that should be optimized:

1. Maximize population equality. Let w(vb) be the population of

block b. Then for any district map P = {V1, . . . , Vd},

PE(P ) = min
Vi∈P

w(Vi).

2. Minimize the efficiency gap. Let wA(vb) and wB(vb) be votes cast

for party A and party B, respectively, in block b. Let wT (vb) = wA(vb)+

wB(vb) (that is, the total number of votes cast). Assume without loss

of generality that A is the winning party. Then for any district map

P = {V1, . . . , Vd},

EG(P ) =

∣∣∣∣∣∑
Vi∈P

∑
vb∈Vi

(
wA(vb)−

(
wT (vb)

2
+ 1

))
− wB(vb)

∣∣∣∣∣ .
(Note that this assumes that elections are majority-based, and the win-

ner needs half the votes plus one to win.)

3. Minimize counties split. Let c(b) be the county of a block. Then

for any district map P = {V1, . . . , Vd},

CS(P ) =
∑
Vi∈P

|{c(b) | b ∈ Vi}|.

While there are other factors of district map quality that could be consid-

ered like compactness, we believe that the three factors above are sufficient
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to create districts of high quality. Adding more factors would dramatically

increase the difficulty of the problem, since the search space would increase

by an order of magnitude.

We can realize the problem of redistricting as solving BCP for each factor.

But, since it’s unlikely that a maximally efficient map would have much

overlap with a map maximally equal in population, for example, it would be

difficult to reconcile three separate solutions. Instead, we can use local search

techniques, and in particular multi-objective optimization methods, to find

a map that has high scores for each balance function above. Our approach

is discussed below.

3.2 The Algorithm

The framework of our algorithm is straightforward. Using memetic evolution,

we can quickly find maxima for each of several balance functions. The search

space is broad, consisting of every partition of vertices (regardless of whether

the partition induces connected subgraphs, and in fact regardless of whether

the partition is a d-partition). This enables us to encode elements of the

search space as chromosomes intuitively.

3.2.1 Genetic Operators

The chromosome is a |V |-length array C, where C[i] is the index of the subset

containing vertex i. This presents the issue where multiple chromosomes can

encode the same partition—for example, C1 = [1, 2, 3] represents the same

3-partition of 3 vertices as C2 = [3, 2, 1]—so chromosomes are normalized,

where i < j implies C[i] < C[j]. Thus, both C1 and C2 would be represented

as [1, 2, 3].

Selection is performed using 3-way tournament selection, where each par-

ent is chosen as the best of three randomly sampled elements of the popu-

lation. This approach doesn’t guarantee that the best individuals in a pop-
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ulation are chosen, but this is done to ensure diversity of genetic material,

as discussed above. Crossover takes two parents, p1, and p2, picks a random

split point in the chromosome, splitting the parent chromosomes into two,

such that p1 = αβ and p2 = γδ, and yields children c1 = αδ and c2 = γβ.

Finally, mutation randomly (and with diminishing probability in successive

generations) chooses a random element in the chromosome and assigns it a

random district. (After mutation, the chromosome must be renormalized.)

3.2.2 NSGA-II

These operators determine how elements of the population interact with each

other. In addition to this, how the population is determined between gener-

ations must be chosen carefully. The simplest approach is to replace every

generation with their children wholesale, but that could remove particularly

optimal parents merely for the sake of having new genes in the gene pool. In

real life, that’s unavoidable, but in computational evolution, we can choose

to hold on to particularly good members of the population for an arbitrary

number of generations.

This technique of preserving good parents at the cost of including sub-

optimal children is called elitism, but opens up the possibility of premature

convergence. It’s also computationally expensive, since comparing every el-

ement of the population to every other element for the sake of elitism takes

a while. Moreover, if we add the additional complication of multi-objective

optimization, the runtime can blow up quickly.

Balancing elitism with genetic diversity in the multi-objective context,

without compromising runtime, is a tricky problem, and a lot of research

in evolutionary algorithms focuses on this problem. Arguably, the current

gold standard in the literature is NSGA-II, which stands for Nondominated

Sorting Genetic Algorithm (version 2), introduced in 2002 by Deb et al. (see

[13]). A more technical introduction to the subject is available in the original

paper, but broadly speaking, the algorithm operates as follows:
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1. Let Pt−1 be the current set of parents, and let Qt−1 be the children of

those parents. Denote n = |Pt−1|. Define the current population as

Pt−1 ∪Qt−1.

2. Sort the current population into frontiers F = {F1, F2, . . . , Fm}. Define

the rank of a state S as i if S ∈ Fi.
1

3. Initialize Pt to the empty set. While |Pt| < n, let P = P ∪ Fi for

i ∈ [1..m]. (Note that this may result in |Pt| > n.)

4. For each objective function f , sort Fk under f .2 Calculate the distance

from each state Fk[i] to its neighbors, as follows:

df (S) =

 ∞ i = 0 or i = |Fk| − 1
|f(Fk[i+ 1])− f(Fk[i− 1])|

fmax − fmin
otherwise

(fmax and fmin are the maximal and minimal values, respectively, of f .

Let d(S) =
∑

f∈F df (S).

5. Let ≺ be the partial order defined as follows: S1 ≺ S2 if rank(S1) <

rank(S2), or rank(S1) = rank(S2) and d(S1) > d(S2). Sort Pt according

to ≺, and let Pt = Pt[: n] (that is, select the best n elements).

6. Perform selection, crossover, and mutation as normal to find Qt.

At a very high level, what this is intended to do is choose the best elements

from the parent and child populations taken together to form the new parent

populations, thus in theory creating the best pool of genetic material from

which to create children. Step 4 also guarantees that solution diversity is

maintained, which is critical in guaranteeing that genetic material doesn’t

1In the single-objective sense, this is equivalent to ordinary sorting.
2That is, order the states in Fk by their value under f .
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become redundant over time. The overall runtime is O(MN2), where M is

the number of objective functions and N is the size of the population.3

3.2.3 Local Search

After each generation is created, each child is optimized before the popula-

tion is sorted by performing hill-climbing. The conversion between a genetic

candidate C and a search state S is simple: let G = (V,E) be the origi-

nal graph (that is, before any partitioning is performed). Then the induced

graph GC = (V,EC), where EC = {(i, j) ∈ E | C[i] == C[j]}. The set of

edges removed by the partition, HC = E \ EC , are termed “hypothetical”

edges, for reasons that will become clear.

The search space is necessarily the same as the phenotypic domain (that

is, the set of possible partitions chromosomes could represent). Steps in the

domain can be visualized as moving vertices that lie on the border between

districts from their district to the other one. The set of vertices that lie on

the border are, of course, precisely the set of hypothetical edges—termed

hypothetical because they represent the set of possible moves.

Steps must maintain the following invariants:

• Invariant One. For every intermediate graph partition G′, H ′ must

only contain edges not in G′, but in G.

• Invariant Two. For every intermediate graph partition G′ and chro-

mosome C ′, for all vertex pairs i and j, C[i] 6= C[j] implies (i, j) is not

in G′.

Steps are made as follows:

3An algorithm having runtime O(f(n)), where n is the size of the input, means the
algorithm takes a number of operations bounded by c∗f(n), for some c > 0. This is called
big-O notation.
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(b) Chromosome: [111 122 322 332]

Figure 3.1: Taking a step. Each vertex color is a separate district. Hypothet-
ical edges are shown in black dotted lines. Here, the hypothetical edge (4, 7)
is realized by adding 7 to 4’s district. 7 is disconnected from its component
(thus adding (6, 7) and (7, 10), shown in dotted red, to the hypothetical edge
set and removing them from the graph) and added to 4’s component (thus
adding (4, 7) and (7, 8), shown in solid red, to the graph and removing them
from the hypothetical edge set).

1. Let (u, v) be a hypothetical edge. Then, by construction, u and v are

in different districts. Let N(i) = {v′ ∈ V | (i, v′) ∈ EC} be the set of

neighbors of a vertex i in GC .

2. Set C[v] = C[u].

3. For all vertices w ∈ N(v), if C[w] == C[u], add (w, v) to the graph;

if C[w] == C[v], remove (w, v) from the graph. The added edges are

removed from HC , and vice versa.

3.2.4 Handling Invalid States

Chromosomes in the evolutionary phase and moves in the hill-climbing phase

aren’t guaranteed to yield valid partitions—that is, d-partitions that induce d

connected subgraphs. For example, in the graph in figure 3.1, if the edge (1, 4)

were realized, although the second district (in green) would be connected,

the first district (in yellow) wouldn’t. It’s also possible that the number of
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districts could decrease (but not increase) arbitrarily. For example, if one

subset of vertices in the partition contained a single vertex, and that vertex

were added to a different district, that partition would cease to exist.

To account for this, district scores receive a penalty modifier for hav-

ing more or fewer than d connected components, and more or fewer than

d partitions, such that if B(S) is the score of a partition with c connected

components and p partitions, the adjusted score B′(S) becomes

B′(S) = B(S)− 100 ∗ |B(S)| ∗ |c− d| − 1000 ∗ |B(S)| ∗ |p− d|.

Since B(S) = B′(S) when c = p = d, this both hurts invalid states and allows

local search to find a better, valid alternative (which wouldn’t be possible if,

for example, invalid states received a score of −∞).

3.3 Implementation

At a high level, our software operates as follows for each state:

1. Getting the data.

(a) The state’s block and block group shapefiles and demographic

data are collected from the Census Bureau.

(b) If available, the state’s precinct shapefiles and voting results are

collected from the Office of the Secretary of State for that state.

(c) The state’s precinct data are disaggregated to the block level

by examining the geographic relationships between blocks and

precincts.

2. Constructing the block graph.

(a) The block graph is built by examining the geographic relationships

between blocks and constructing the appropriate graph.
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(b) The block graph is populated with with demographic data from

the Census Bureau.

(c) The block graph is populated with electoral data from the disag-

gregated precinct data.

3. Evolution.

(a) The initial population (of size p) is generated by generating ran-

dom chromosomes. Selection, crossover, and mutation are per-

formed as normal on the first generation.

(b) The entire population is optimized via local search.

(c) The population is sorted into frontiers and ranked, and the best

p elements are chosen to create the new parent population, via

NSGA-II. Selection, crossover, and mutation are performed, and

the resulting child population is optimized via local search.

(d) The last step is repeated until the maximum number of genera-

tions is reached.

The theory behind third step, evolution, was discussed in detail above.

In implementing the system, though, we encountered several major hurdles,

from data availability to computational intractability. This section focuses

on those issues, detailing the sources of these problems and our solutions to

each of them. We also discuss several problems to which we don’t yet have a

good solution and potential solutions. In addition, we discuss some results,

both in test cases and in real-world examples. It should be noted that these

results are incomplete, and future work will see these approaches taken to

larger-scale problems than those solved within this paper.

3.3.1 Data Sourcing

The United States Census Bureau makes all data collected during the course

of the decennial census available online. While the data are expansive in
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their scope, they are also presented in a fragmented and somewhat confusing

manner. The Bureau takes the approach that complexity is important, and

that it’s better to present all the data confusingly than it is to present only

some of the data simply. It’s worth discussing, though, how data for this

project was sourced.4

Working with Shapefiles

The geography of the United States is described by the Census Bureau using a

data format called a shapefile. Shapefiles detail polygons by their coordinates

(which, in the real world, corresponds to latitude-longitude pairs), and can

contain auxiliary data (like population or average rainfall) corresponding to

the region described by the file. For each geographic entity tracked by the

Census Bureau (see figure 3.2), shapefiles going back several years are freely

available online.5

The Bureau also maintains a separate database of CSV (comma-separated

value) files that store population data, but these data are stored in several

places at once, with small differences between each source. One source6

maintains year-2015 shapefiles joined with data from the 2011-2015 American

Community Survey, which is a secondary survey performed by the Bureau on

an annual basis (as opposed to the Census, which is taken every ten years).

These files only track data down to the block group level, though. The same

source also maintains joined data at the block level, but using data from

the 2010 Census (and, although unspecified, presumably shapefiles from the

same year).

Luckily, once the correct data are found, working with the files is gener-

ally fairly simple. Third-party software exists that allows users to view and

analyze the shapefiles. In addition, shapefile manipulation libraries exist in

4It’s also worth noting that this section will likely go out of date very soon, as the
Decennial Census will be released in fewer than five years from the time of writing.

5See https://www.census.gov/cgi-bin/geo/shapefiles/index.php.
6See https://www.census.gov/geo/maps-data/data/tiger-data.html.
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Figure 3.2: The hierarchy of Census geographic entities. Taken from the U.S.
Census Bureau website.

many popular programming languages. For this project, we use Fiona7 to

read and write shapefiles, Shapely8 to work with the spatial data (specifi-

cally, to build the block graph, as detailed below), and Descartes9 to plot

shapefile data.

7See https://pypi.python.org/pypi/Fiona.
8See https://pypi.python.org/pypi/Shapely.
9See https://pypi.python.org/pypi/Descartes.
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Merging Voting Data

Voting data comes in several forms, each of which is safeguarded by the

strongest privacy protections. All of these data are maintained not at the

federal level, though, but at the state level, and often at even more granular

levels than that. Every state is divided into voting precincts (also called

VTDs), each of which maintains election results independently. These results

are sent to the Secretary of State for each state and are tabulated to declare

winners in statewide elections.

This presents two problems. For one thing, states are under no obliga-

tion to maintain or provide to the public precinct-by-precinct breakdowns of

voting results. This occasionally means that data has to be collected from

each precinct, many of which don’t maintain simple electronic records. This

can also create potential data standardization issues, since what one precinct

describes as a vote for party A might not be what another uses to describe

that vote. Some states do maintain state-level records, but finding these is

often non-trivial.

The other problem is slightly more challenging. Precincts are arbitrary,

and aside from obeying county lines don’t have to obey any other geographic

lines. The process of disaggregating precinct-level data to the block level

is a nontrivial one. The goal is to figure out how many votes each block

contributes to the statewide total, but because precincts aren’t guaranteed

to snap to block boundaries, blocks are sometimes contained in multiple

precincts at once. Assigning those blocks a share of the vote in every precinct

in which they’re contained is a nontrivial problem. How this issue is resolved

is discussed in the next section.
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3.3.2 From Data to Graph

Building the Block Graph

Once all of the data has been found, the block graph must be constructed.

Recall that the block graph contains a vertex for every block in the graph,

and an edge between every pair of vertices whose blocks intersect nontrivially

(that is, along more than just a point). The simplest way to do this, of course,

is to compare every block to every other block and see if they intersect. But

this requires O(n2) operations for n blocks, which at an average of 200,000

blocks, this would require 40 billion intersection checks, which are expensive.

Instead, consider the following process:

1. Place the n blocks into m collections, such that the blocks in each

collection are connected.

2. Build a graph of the m collections using the näıve approach, which for

small m isn’t too expensive.

3. For each collection, build a graph of the (on average) n/m blocks

näıvely.

4. For each edge in the collection graph (u, v) näıvely build the edges

between the blocks in u’s collection and the blocks in v’s collection.

(See figure 3.3.)

Constructing the collection graph takes m+m2 operations to create the

vertices and build the edges. Similarly, the block graph within each of the m

collections takes n/m+(n/m)2 operations to create. Finally, the comparisons

between collection subgraphs takes (n/m)2 operations. The number of these

comparisons is equal to the number of edges in the collection graph, which,

since the graph is planar, is at most 3m− 6 by Euler’s Theorem. Thus, the
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(d) Finish by constructing the edges be-
tween connected block groups.

Figure 3.3: Building the block graph.

total number of operations is

m+m2 +m

(
n

m
+
n2

m2

)
+ (3m− 6)

(
n2

m2

)
= m+m2 + n+ (4m− 6)

n2

m2
.

By taking the derivative of this equation with respect to m, setting it

equal to 0, and solving for m, for n = 200,000, we get that the optimal value

of m is 4307. As it happens, there are around 4270 Census block groups

per state in the United States. Furthermore, finding the block group that

contains a block is trivial. Every block is assigned an ID number (called a
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GEOID), which is the ID of its block group, plus the index of the block in

the block group, so going from block to block group is a matter of removing

the last three digits from the ID of the block. Thus, by building a block

group graph first, then using the above algorithm to build the block graph,

we can reduce the number of operations from 40 billion to 55 million.

Mapping Precincts to Blocks

A few different approaches can be used to resolve the problem of precinct

disaggregation, introduced in the previous section. (See [38] for a breakdown

of each.) The simplest method, which only requires the boundaries of the

precincts in a state, takes the following approach. Suppose that a precinct

p with area a and v votes cast intersects n blocks b1, . . . , bn, in regions with

area a1, . . . , an. Then the fraction of v assigned to block bi is given by ai/a.

This makes the assumption that populations in each precinct are uniformly

distributed, which is unlikely to be the case. In the absence of more specific

data, however, this is the best possible option.10

Even with this approach, disaggregation is an expensive process. Näıvely

comparing every precinct to every block requires a number of operations

proportional to the product of the number of precincts and the number of

blocks. A state with 200,000 blocks and 5,000 precincts (although these

numbers can vary widely) requires a billion intersection checks, which can

be expensive. We can improve on this approach somewhat by borrowing

ideas from our construction of the block graph. Our disaggregation approach

finds every block group-precinct overlap, thus reducing the number of block-

precinct comparisons by only having to compare blocks in a block group to

precincts that overlap that block group.

10[38] suggests an alternative approach that involves using a voter registration database,
geolocating for each voter their address and assigning the block in which that address is
contained to the precinct assigned to that voter in the database. However, voter regis-
tration data aren’t always easily available, and geolocation of the millions of addresses
contained in the average database is infeasible.
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3.3.3 Evolution: Encoding the Chromosome

The theory behind the evolutionary algorithms discussed above is not partic-

ularly complicated, but while most of the genetic operators are very straight-

forward, the choice of chromosome encoding is not, and merits further dis-

cussion. Graph partitions are represented very simply by the chromosome

in the evolutionary phase. Each partition is assigned a value between 1 and

d, and if vertex i is in partition j, then the chromosome C has C[i] = j.

Reconstructing the graph (i.e., the phenotype corresponding to the genotype

expressed in the chromosome) is straightforward, as the graph is merely the

composition of the subgraphs induced by each partition. These partitions

can be found in O(|V |) time, and so the graph can be built in O(|V | + |E|)
total time. (Since, as mentioned above, the graph is planar and therefore

|E| ≤ 3|V | − 6, this is actually O(|V |).)
As mentioned above, though, this chromosome allows for any vertex par-

tition to be a “valid” element of the search space, even if the subsets don’t

induce connected subgraphs. In addition, although as |V | increases this be-

comes more unlikely, it’s possible for a chromosome to encode fewer than

d partitions if, for example, on initialization the random integer array con-

tains fewer than d unique elements, or during crossover and mutation some

partition indices disappear.

Both of these issues can be handled by penalizing partitions as discussed

above, but penalization is expensive; in particular, finding the number of

connected components in a graph takes O(|V | + |E|) time näıvely. There

are ways to speed this time up, as discussed below. We initially avoided this

issue, however, by changing the representation of the partition.

In our initial attempt, the chromosome was an |E|-length array. Each

edge e was assigned a priority pe ∈ [0, 1]. To reconstruct the graph, we

added edges into graph in order of their priority. By using the union-find

data structure, which can be used to track connected components in effec-
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tively constant time11, we could add edges until the number of connected

components equaled d. Thus, the graph was guaranteed to have d connected

components.

There were two issues with this approach. The first was that while the

chromosome could easily be converted into a graph, the reverse was not easily

doable. Since a graph has no implicit ordering on the edges it contains, it’s

not immediately clear that there’s a deterministic conversion from edge into

priority. Genetic algorithms function best when as much is deterministic as

possible, so optimizing a chromosome via hill-climbing may have actually

made the process less likely to reach an optimal candidate.

When we removed optimization, we found that the algorithm converged

very quickly to a suboptimal candidate. (The utility of the final output was

less than half the utility of the final output of a very simple and inefficient

implementation of the vertex-based chromosome approach.) There are many

possible reasons for this, and substantive discussion of the suboptimality of

one approach of evolution compared to another is beyond the scope of this

paper.

However, we conjecture that the reason behind the inefficiency is simple.

In human DNA, a nontrivial percentage of the base pairs has no direct im-

pact on protein construction. Instead, it’s theorized that these pairs have

significance (so to speak) in epigenetic interactions and in ways that aren’t

immediately clear in the phenotype. This DNA is called “junk DNA”. Put

simply, we believe that the reason the edge-based encoding as described above

failed to act efficiently is because most of it is junk. (See, for example, [23]

for a discussion of junk DNA.)

Every edge that connects two disconnected components decreases the

number of connected components by one. To get from |V | to d connected

11The disjoint-set data structure takes O(α(n)) time, where α(n) is the inverse of the
Ackermann function. The Ackermann function A(n) grows so fast that A(5) is a number
larger than can be expressed by the physical universe. Thus, α(n) < 5 for all practical
input sizes, giving the disjoint-set data structure near-constant time.
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components, then, only |V | − d edges are needed (at the very minimum). In

a planar graph, though, there can be as many as 3|V |−6 edges, which means

that in the very worst case there are 3|V | − 6 − (|V | − d) = 2|V | + (d − 6)

edges aren’t included in the graph (and thus in the fitness evaluation), and

are thus effectively wasted.

It’s worth studying why this approach failed to work in more detail, and

one potential avenue of future work is exploring alternative chromosome en-

codings that make the graph operations simpler (as the edge encoding would

have done). For now, though, districts are still drawn using the vertex en-

coding.

3.3.4 Optimizing Hill-Climbing

Several important optimizations are required to make hill-climbing efficient

enough to succeed at scale. Generally, hill-climbing continues until there

are no more neighboring states that dominate the current state. However,

given that optimization occurs in every generation for every child, and given

that for large graphs the number of possible neighbor states that must be

evaluated is significant, this quickly becomes intractable. This process can

be made more efficient, albeit at a cost to performance of the algorithm, by

capping two parameters: the number of neighbors evaluated in each step (n),

and the number of steps taken (s).

We also cache states during evaluation, as follows. Let {S1, . . . , Ss} be

the states encountered during s-step hill-climbing from a starting state S0.

Each Si, 0 ≤ i ≤ s, is mapped to Ss, such that if during the optimization of

a different state S ′ some Si is encountered, the algorithm can immediately

terminate by returning Ss in O(1) time. (Note that this approach doesn’t

guarantee that s steps are always taken. If S ′ = Si for some i—that is, the

output of the genetic phase is Si—then only one “step” will be taken and Ss

will be returned.)
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3.3.5 Tracking Connected Components

As mentioned above, counting the number of connected components in a

graph is done näıvely using breadth-first search in O(|V | + |E|). Without

getting into too much detail, the simple algorithm enumerates connected

components by starting at a random point, adding all of its neighbors to its

connected component, going to each of their neighbors and adding them to

the same connected component, and so on until there are no more neighbor-

ing vertices. If there are still unexplored vertices in the graph, the algorithm

repeats the process at one of them, and so on, until there are no more unex-

plored vertices.

This isn’t too bad for a single query. But, since the number of connected

components must be calculated every time a new candidate is created in

evolution and every time a step is evaluated (regardless of whether or not

it’s taken) in hill-climbing, redoing this operation each time can get very

expensive. (Indeed, calculating the number of connected components takes

up almost 99.9% of the total computation time in the näıve implementation.)

However, there has been a significant amount of work done in tracking the

number of connected components as edges are inserted and deleted in a graph,

yielding significantly faster algorithms.

As mentioned below, this work is beyond the scope of this paper. Our

approach simply caps the number of steps taken for each child candidate at

20, and the number of moves examined at 50. This reduces runtime, albeit

at a tradeoff with solution quality.

Related Work

For general graphs, Holm et al. (see [12]) use a structure called Euler-tour

(or ET) trees, created by Henzinger and King (see [9]), to support arbitrary

edge insertions and deletions. These operations can be performed inO(log2 n)

time. Furthermore, connectivity queries (i.e., “is there a path between u and

v?”) can be answered in O(log n/ log log n) time. Eppstein et al. (see [6])
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give a structure that supports insert, delete, and connectivity operations in

O(log n) time for plane graphs, which are planar graphs whose embeddings

in the plane are fixed (for example by specifying Cartesian coordinates to

each vertex).

Here, though, we have a simpler problem to solve than the one answered

by Eppstein et al. Their work supports arbitrary edge insertion and deletion;

that is, so long as the graph remains planar, any two vertices can be connected

in the graph. Here, though, we know at the beginning the total structure

of the graph—in other words, we know every edge that will ever be added

or removed from the graph. We conjecture that it’s possible to improve on

the O(log n) result of Eppstein et al. by exploiting this fact to do some

precomputation on the graph; what exactly that precomputation may be is

unknown.

Some Computational Geometry

There’s another approach that’s possible here, similar to the one developed

by Eppstein et al., that exploits the planarity of the graph to track connected

components. Plane graphs (but not planar graphs) induce faces, which are

regions on the plane bounded by edges in the graph. Plane graphs also

contain a single unbounded face f ∗ that consists of the plane, minus the closed

faces. (See figure 3.4a.) Faces have a convenient relationship to connected

components. A bridge edge in a graph is an edge whose removal would

increase the number of connected components in a graph. In other words,

(u, v) is a bridge in a graph if, in the graph G = (V,E), u and v are connected,

but in G′ = (V,E \ {(u, v)}) (i.e., the graph without the edge (u, v)), u and

v are no longer connected. (See figure 3.4b.)

Every edge in a plane graph is incident to (i.e., borders) at most two

faces, one on each side of the edge. These faces don’t have to be unique, so

that both sides of the edge border the same face. The edges for which both

incident faces are the same are precisely the set of bridge edges. To see this,
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suppose there were an edge e = (u, v), both of whose sides were incident to

the same face, and assume by contradiction that u and v are still connected

after removing e. Then there is some path from u to v that doesn’t contain e.

It can be seen that adding e to this path creates a cycle (since the path would

then travel from u to v). This cycle creates a closed face, on one side of e,

separate from the face incident to the other side of e. This is a contradiction,

however, and thus e must be a bridge. (See [21].)

1 2

3

4 5

(a) This plane graph has four faces, the
vertices in green.

1 2

3

4 5

(b) Here, the red edge is a bridge edge,
since its removal would disconnect ver-
tex 4 from the other three vertices.

1 2

3

4 5

(c) The dual graph. Note that the dual
of (2, 3) is a self-loop, which implies that
(2, 3) is a bridge.

1 2

3

4 5

(d) The half-edge data structure. Red
half-edges enclose the open face, and
green edges enclose the closed face.
Note that the bridge edge has two red
half-edges.

Figure 3.4: Plane graphs, the dual graph, and the half-edge data structure.
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Bridge edges increase the number of connected components by one on

deletion, and decrease the number by one upon insertion. We can thus track

the number of connected components in a dynamic plane graph by testing

if added and deleted edges are bridges. Whether these edges are bridges or

not can be determined by testing if the edge is incident to the same face on

both sides. There are several ways of doing this. One way is via the dual

graph (see figure 3.4c), which is the graph G∗ = (V ∗, E∗), where each vertex

v∗ ∈ V ∗ represents a face in G, and each edge e∗ = (u∗, v∗) connects two faces

when separated by the edge e (so that u∗ = v∗ if an edge is incident to the

same face on both sides). Another way is via the half-edge data structure (see

figure 3.4d), where every edge e = (u, v) is assigned two directed half-edges,

u→ v and v → u, such that each half-edge is incident to only one face, and

such that the half-edges incident to a face form a cycle that delineates that

face.

It’s possible that by initializing one (or both) of these data structures

upon building the block graph, we can precompute which edges function

as bridges under different graph partitions. This work, however, is beyond

the scope of this work. As discussed below, however, counting connected

components is among the most expensive parts of the entire algorithm, ex-

ploding the runtime. Future work will address this by trying to use one of

the algorithms mentioned above to reduce the complexity of local search.

3.4 Conclusion

This section introduced a novel framework for solving the balanced con-

nected partition problem with multiple balance functions. The approach is

theoretically simple, encoding graph partitions as vertex-to-component index

mappings. Genetic evolution is performed using these mappings as chromo-

somes and operating under the NSGA-II framework with 3-way tournament

selection, one-point crossover, and one-point mutation. Children in each gen-
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eration are optimized via 20-step hill-climbing. The next chapter discusses

our results in detail, as well as future directions for this work.
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Chapter 4

Results and Future Work

...intro comments go here...

4.1 Experimental Setup

All code was written in Python 3.5.2. Evaluation code (see Section 4.2)

was evaluated on an Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz run-

ning Ubuntu 16.04.3 LTS (Xenial Xerus). State-level code (see Section 4.3)

was evaluated on Mastodon, the University of Texas Department of Com-

puter Science high-throughput computing cluster1. Shapefiles were read in

with fiona and analyzed with shapely. Graphs were processed entirely in

networkx. matplotlib was used for graphs, and descartes was used to plot

shapefiles.

1More information on specific machine hardware is available at https://www.cs.

utexas.edu/facilities/documentation/condor.
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4.2 Evaluation on Toy Graphs

4.2.1 Single-Objective Optimization

We first tested our implementation on n×n grid graphs. These graphs were

small (5 ≤ n ≤ 15) and were initialized with randomly generated weights

between 1 and 50. For all n, the number of partitions, d, was set to 5. The

number of generations, g, was set to 100, and for n > 6, the population size

p was set to 50.

The first round of evaluation was performed with a single weight on each

vertex, reducing the problem to single-objective optimization. For each n, the

algorithm was run once without, and once with, hill-climbing optimization,

to compare performance. The number of steps taken was fixed at 20, and

the number of moves sampled was set to 50. The utility function, or B-score,

calculated the minimum weight sum among districts in the partition.

Unoptimized Optimized
Graph T B∗ Best Score Total Time Best Score Total Time
G5,5 559 111 103 n/a 111 n/a
G6,6 868 173 136 n/a 173 n/a
G7,7 1346 269 -798 0:16 268 6:05
G8,8 1521 304 -2396 0:20 302 11:28
G9,9 2300 460 -3992 0:24 458 16:06
G10,10 2424 484 -5394 0:28 484 18:19
G11,11 2922 584 -5397 0:32 584 27:012

Table 4.1: Best score and total runtime after 100 generations. Runtime data
wasn’t collected for n = 5 or n = 6, as the population size was larger (300
instead of 50). Note that the best possible score, B∗, may not always be
achievable, since not all partitions are valid.

The difference in performance is staggering: for most graphs, after 100

generations, the best unoptimized solution had a negative B-score (that is,

the number of connected components differed from the goal), while typically

the optimized algorithm reached a nearly-optimal solution after fewer than
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10 generations. Table 4.1 contains the results of this computation for differ-

ent n. Figure 4.1 contains graphs of the B-score versus generation for the

unoptimized (dashed line) and optimized (solid line) algorithms. Moreover,

the optimized algorithm generally achieves the maximum possible score.

Of course, as Table 4.1 shows, the efficiency dropoff, even for small graphs,

is steep. The optimized algorithm took at least an order of magnitude more

time to perform hill-climbing, even with the severe limits on number of steps

taken and number of potential moves evaluated. On the evaluation machine,

each step in G11,11 took 60 milliseconds to run, but for 75 generations, with

a population size of 50, and a maximum of 20 steps per child, hill-climbing

took a total of 26.2 minutes.
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(a) n = 5, T = 559 (b) n = 6, T = 868

(c) n = 7, T = 1346 (d) n = 8, T = 1521

(e) n = 9, T = 2300 (f) n = 10, T = 2424

Figure 4.1: Running on graphs of size n× n for 100 generations. The total
weight sum T is also given, such that the maximum possible score is T/5.
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4.2.2 Multi-Objective Optimization

The evaluation framework doesn’t differ much in the multi-objective model,

except that every vertex has two random weights instead of one. The bal-

ance functions become Ba and Bb, where Bi gives the minimum weight sum

among subsets in the partition. The major change in evaluation comes from

the fact that it is in general not guaranteed that a solution that maximizes

both objective functions exists, and so instead the best possible result from

evaluation is the Pareto frontier of solutions that are all “as good” as each

other. The number of generations was still fixed at g = 100, and the popu-

lation size remained at p = 50. The number of districts also remained fixed

at d = 5.

Unoptimized Optimized
Graph T B∗ Best Score Total Time Best Score Total Time
G5,5 559 111 103 n/a 111 n/a
G6,6 868 173 136 n/a 173 n/a
G7,7 1346 269 -798 0:16 268 6:05
G8,8 1521 304 -2396 0:20 302 11:28
G9,9 2300 460 -3992 0:24 458 16:06
G10,10 2424 484 -5394 0:28 484 18:19
G11,11 2922 584 -5397 0:32 584 27:013

Table 4.2: Best score and total runtime after 100 generations. Runtime data
wasn’t collected for n = 5 or n = 6, as the population size was larger (300
instead of 50). Note that the best possible score, B∗, may not always be
achievable, since not all partitions are valid.

Figure 4.2 shows the Pareto frontier after 100 generations with a popu-

lation size of 50. Here again, the performance of the unoptimized algorithm

was far outstripped by the performance of the optimized one, albeit at the

same cost to efficiency. (See Table 4.2 for details.)
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(a) n = 5, T = 559 (b) n = 6, T = 868

(c) n = 7, T = 1346 (d) n = 8, T = 1521

(e) n = 9, T = 2300 (f) n = 10, T = 2424

Figure 4.2: Running on graphs of size n× n for 100 generations. The total
weight sum T is also given, such that the maximum possible score is T/5.
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4.3 Evaluation at the State Level

The real test of our algorithm is, of course, in partitioning a state into dis-

tricts, a far more involved calculation than evaluation on toy graphs. We

tested our solution on the state of Washington, for two reasons: quality of

data and size. As mentioned above, data availability can vary widely from

state to state, as different Secretaries of State maintain different standards of

election data collection. Washington maintains extraordinarily complete and

easily accessible election returns, broken down at the county and precinct

level, for use in research. Furthermore, Washington is reasonably sized, con-

sisting of 195,000 blocks, which is fairly close to the national average of

217,000.

Unfortunately, Washington confronts the would-be gerrymanderer with

a handful of problems. Washington is geographically diverse, with moun-

tains and bodies of water that can divide districts into multiple parts, none

of which is accessible to any of the others. Accounting for geography is in

general nontrivial, since shapefiles don’t discriminate between neighboring

blocks whose border can be crossed and “neighboring” blocks that are in

fact separated by impassable terrain. Moreover, Washington, although ad-

mittedly to no further a degree than many other states, contains a population

that’s spread out widely through the state. Almost a tenth of the population

lives in Seattle alone, for example.4

Level |V | |E| Pop. Mean (Std. Dev.)
County 39 92 186872 (379608.4)

Block Group 4783 13338 1461 (676.7)
Block 195574 480271 34 (82.3)

Table 4.3: The size of the adjacency graph at each granularity, along with
the mean and standard deviation of the population in each unit.

4Seattle is home to 704,000 people, whereas Washington state is home to 7.3 million,
according to the Census Bureau.
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Evaluation at the state level is possible at a number of granularities: at

the county level, at the block group level, and at the block level. The size of

the graph varies significantly between levels. (See Table 4.3.) Because the

standard deviation of population decreases at each granularity, the optimality

of the best solution should increase as the input graph becomes more specific.

(That is, the more similarly-populated units in each graph are, the easier it

is to create partitions of equal size, since partitioning a graph where the

population of each unit is the same is equivalent to the easier problem of

1-BCP.)

We started with the single-objective case, where the only score maximized

was population equality. The county graph was easily partitioned, given its

small size. After 100 generations, the optimal solution had a population

equality score of 109,398, less than a third of the goal score. (See Figure 4.3.)

This is because in Washington, the desired district population is 364,400,

but four counties have more than that number of residents. In fact, the

largest county has 2.2 million residents, making creating district maps with

a population difference of less than 1% between the smallest and largest

districts impossible.

The denouement of most papers on computational gerrymandering tends

to be a picture of a state redistricted with the algorithm proposed in the

paper. Unfortunately, except for the highly suboptimal county-level graph,

we were unable to create such an image, as expanding to larger graphs proved

intractable. The expected runtime for the optimized algorithm, with p = 50

and g = 100 as before, was on the order of a week for the block group graph.

(We weren’t able to calculate expected runtime for the block graph, which is

two orders of magnitude larger in size than the block group graph.)

Multi-objective optimization at the state level is currently in progress,

with the primary roadblock being data quality. The precinct shapefiles, which

are standardized at the state level, are not by default valid, which means some

additional computation is required to convert the files as they are to valid
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Figure 4.3: The optimal partition of Washington state at the county level.

input data for unit to precinct association.

4.4 Inefficiencies

In the context of high-performance computing, even a graph with 200,000

vertices is not a particularly large input graph. The fact that evaluation takes

minutes on toy graphs is disconcerting, and suggests that there are deeper

ineffeciencies that need to be addressed. These inefficiencies are varied, but

probably the most serious and costly one is that Python itself is a poor

language for performance-intensive computing.

Python is a great language for rapid deployment. That is, it doesn’t take

much time to go from an idea to functioning Python code. The language

paradigms are so simple that Python is often compared to pseudocode. Of

course, all of this comes at a hit to performance. The programmer doesn’t

have to specify types, which makes coding easier than in a language where the

types of variables have to be specified, but also makes looking up a variable

(the under-the-hood process of matching a variable name to the data it holds)
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more expensive.

There are, of course, ways of optimizing Python to improve performance

somewhat. One approach, called Cython, allows programs in Python to call

expensive methods in C, a much more performant language, thus saving on

overall runtime. Another is to abandon the standard interpreter, CPython,

in favor of an interpreter with better performance, like PyPy. (CPython

was built as a reference implementation of a Python interpreter, and wasn’t

necessarily built with speed as the primary goal.)

Another solution to this would be to rewrite the entire project in a dif-

ferent, more performant language like C++ or Golang. But the advantage

of Python isn’t just in the fact that it’s easy to deploy applications—it’s in

its excellent third-party library database. We made extensive use of Python

libraries in our work, as described above—the bulk of the graph algorithms

were handled by the networkx library—some of which don’t have clear ana-

logues on other languages.

Of course, using libraries comes with the downside that it’s fairly non-

trivial to make library code faster; for example, networkx would be able to

count connected components (one of the most time-consuming parts of the

algorithm) faster if that particular method were written in C and called via

Cython. But, aside from manually editing the source code, which can get

messy, there isn’t an easy way to resolve this.

Python remains, however, good for small input sizes, and a graph with

5,000 vertices is, although perhaps not trivially small, not exceptionally large

either. In theory, Python should be able to be somewhat performant on

graphs of that scale—and yet it doesn’t. Part of this is in the implementation.

Python’s simplicity is deceptive, and straightforward-looking code can often

be dangerously non-performant. All the line profiling5 in the world wouldn’t

reveal subtle inefficiencies.

5Line profiling refers to the process of timing each line of code with the purpose of
determining which lines take up the most computation time.
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Dividing the workload between multiple processors would also, in the-

ory, serve to reduce runtime. Anecdotally, however, switching to pool-based

execution, using all available cores, didn’t help that much with improving

runtime, and in many cases actually ended up taking more time (perhaps

because of the overhead of having to spin up new processes and combine the

results from each subprocess).

Moreover, as discussed briefly above, there are several parts of the algo-

rithm itself that are inefficient. The most obvious example is in counting

the number of connected components in the graph during utility evaluation,

but there are others. For example, maintaining the set of hypothetical edges

efficiently is in practice if not in theory complicated, as is caching previously-

encountered chromosomes during evolution and states during hill-climbing.

Some of the practical complexity comes from the opacity of the language,

which renders innocuous dangerously inefficient processes, but that is only

part of it. Some processes are not merely practically but also theoretically

inefficient (like, as mentioned above, counting connected components, which

is O(|V |+ |E|)). Finding better ways of solving those problems is a far more

difficult hurdle to cross.

Finally, the performance tradeoff only became really apparent during the

last few weeks of work, as the majority of our testing was on small graphs

for debugging purposes. This hindered our ability to explore any of the po-

tential fixes to the inefficiencies in our codebase, but more importantly it

prevented us from exploring potential ways of taking advantage of alterna-

tive computing environments, like the systems available through the Texas

Advanced Computing Cluster6 that might have improved our computational

speed. The overhead of adapting our code for execution on those machines

was too significant to be manageable given our limited timeframe.

As discussed below, fixing the latent inefficiency of our code is of crucial

importance to any and all future work. The advantage is that these fixes

6See tacc.utexas.edu.
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are relatively simple—except perhaps those which require a large amount of

theory—and many could be fixed merely by switching to a different language.

The theory remains sound, and although the implementation still has fault

lines, these are on the whole manageable.

4.5 Future Work

Throughout this paper, we’ve discussed various potential ways of improving

on and continuing our work. These avenues fall into two categories: finishing

execution of our algorithm, and improving on the algorithm itself.

4.5.1 Finishing Our Work

Our algorithm is structurally sound—the optimality of evaluation on toy

graphs proves that point. So, for that matter, is the majority of our codebase.

Two things need to happen for this work to be truly completed, however:

1. Finish execution. At time of writing, our algorithm is partly through

partitioning the block group graph of Washington state, with the goal

of maximizing population equality alone. This process needs to be

completed, and the results should be made available.

2. Fix and merge voting data. As mentioned above, there are some

issues with the precinct data that require some work to fix. For exam-

ple, the shapefiles provided by the Office of the Washington Secretary of

State aren’t completely valid, in that some of the shapes they describe

contain self-intersections. Furthermore, precincts are specified by the

county in which they’re drawn, but precincts often don’t completely

overlap with the county. (It’s still relatively high, with the lowest area

of overlap encountered at 94% of the precinct area.) These anomalies

will require careful thought as to how they can be fixed.
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Once both of these tasks are completed, we can attempt execution on the

larger block graph, to get an optimal, granular district map.

4.5.2 Improving Our Algorithm

There are several ways to improve the algorithm and our implementation:

1. Switch to a more performant language. As mentioned above,

Python isn’t very efficient, and this inefficiency has led to the long

computation times we’ve highlighted in this paper. Switching to a

more performant language like C++ or Golang would solve this.

2. Consider alternative genetic operators. The genetic operators

used in this paper—three-way tournament selection, one-point crossover,

and one-point mutation—were chosen because of their simplicity and

because of a seeming consensus in the literature of their optimality

for graph algorithms. There are, however, alternative, more compli-

cated approaches, that might yield better performance—perhaps even

removing the need for local-search optimization.

3. Choose alternative chromosome encoding schemes. As described

above, we experimented with an edge-ordering chromosome that yielded

highly suboptimal performance. Our transition to a vertex-based chro-

mosome was done mostly because that encoding was straightforward

to implement. But there is a vast array of ways in which graph parti-

tions can be represented. Future work could focus on testing different

encoding schemes for performance.

4. Implement more efficient graph algorithms. Our work uses the

default implementations of most graph algorithms provided by the net-

workx library. These are in general fairly performant, but because the

graph in our work is fixed, there are optimizations that can be taken

advantage of—for example, as mentioned above, we can exploit the
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planarity of the graph to use more efficient algorithms for tracking

connected components.

5. Explore alternative local search strategies. Genetic evolution and

hill-climbing are not the only ways of exploring a combinatoric search

space. There are others, like simulated annealing, which allows for

occasional downward movement with diminishing probability in hill-

climbing, that may yield more optimal solutions. Our approach to

memetic evolution also performs evolution every generation, but it may

be more efficient to perform local search only once every 10 generations,

for example. There are also alternatives to NSGA-II for population

management that might yield more diverse solutions.

6. Experiment with different utility functions. Our work uses three

fairly basic utility functions, but there are many more that should be

considered. For example, it may be useful to consider the compactness

of districts, which, although difficult to achieve while balancing mi-

nority interests when districts are drawn by hand, could be achievable

using a computer. Other possible utility functions include diversity

of population in each district (by some combination of demographic

factors), or a more complex efficiency gap measurement that measures

partisan lean by primary voting.

These are a few potential approaches to improving our work. There are

others. Much of the work that needs to be done to improve solution will

require additional background research into genetic theory and artificial in-

telligence beyond the scope of this paper.

4.6 Conclusion

...concluding remarks go here...
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Conclusion

Gerrymandering is, without a doubt, one of the most dangerous practices

carried on in the United States today. Because of its subtlety, it’s hard to

measure, hard to attack, and hard to fix. The Supreme Court has declined

to act against it, and in fact has weakened protections against the practice.

In 2004, they came the closest yet to outlawing the practice, but Kennedy

decided not to side with the liberals and instead, as is his practice, chart

out a middle ground that left open the possibility of a future challenge, if

a standard for measuring gerrymandering could be found. In June of next

year, when the Court hands down their opinion in Gill v. Whitford, Kennedy

may decide that the efficiency gap is precisely that standard, and strike down

gerrymandering as unconstitutional once and for all.

If he does so, the vast majority of states will have to rethink the way

they handle redistricting. There are several possibilities for how they may

do so, but none is more promising than by computer, taking advantage of the

unprecedented scale at which data are available that would enable drawing

fairer, more representative voting districts. And, while there are a handful of

examples scattered throughout the literature of algorithms that draw districts

by computer, they mostly focus on the simplest challenge—creating districts

equal in population.

This paper goes beyond that. Our algorithm enables drawing districts

that are optimal with respect to an arbitrary number of objective functions.

Although execution is still pending at the state level, the results are promising
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on small inputs—in fact, within only a handful of generations, our algorithm

finds partitions that are optimal along every objective function. While there

is much that can be done to improve on these results, the results described

in this paper provide a solid foundation for future work.

It remains to be seen if the Court will strike down gerrymandering and

end a practice that has subverted the will of political minorities for over two

hundred years. Even if they don’t, the rise of independent, expert redis-

tricting commissions around the country is promising. But the only reliable

solution to redistricting is an algorithmic one. Perhaps with such an ap-

proach, coupled with leadership at the state and federal level, we may find

ourselves at the end of the era of gerrymandering, and the beginning of an

era of truly fair representation.
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